Save up to 80% by drug discount in your pharmacy with "Pharmacy Near Me - National Drug Discount Card"
You can scan QR Code(just open camera on your phone/scan by application) from the image on prescription drug discount card to save it to your mobile phone. Or just click on image if you're on mobile phone.
Product NDC Code | 55111-530 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Drug Name | Divalproex sodium |
||||||||||
Type | Generic | ||||||||||
Pharm Class | Anti-epileptic Agent [EPC], Decreased Central Nervous System Disorganized Electrical Activity [PE], Mood Stabilizer [EPC] |
||||||||||
Active Ingredients |
|
||||||||||
Route | ORAL | ||||||||||
Dosage Form | TABLET, DELAYED RELEASE | ||||||||||
RxCUI drug identifier | 1099625, 1099678, 1099870 |
||||||||||
Application Number | ANDA078755 | ||||||||||
Labeler Name | Dr.Reddy's Laboratories Limited | ||||||||||
Packages |
|
||||||||||
Check if available Online | Get Medication Prices online with Discount |
Overdosage of divalproex sodium
Information about signs, symptoms, and laboratory findings of acute ovedosage and the general principles of overdose treatment.10 OVERDOSAGE Overdosage with valproate may result in somnolence, heart block, and deep coma. Fatalities have been reported; however patients have recovered from valproate levels as high as 2,120 mcg/mL. In overdose situations, the fraction of drug not bound to protein is high and hemodialysis or tandem hemodialysis plus hemoperfusion may result in significant removal of drug. The benefit of gastric lavage or emesis will vary with the time since ingestion. General supportive measures should be applied with particular attention to the maintenance of adequate urinary output. Naloxone has been reported to reverse the CNS depressant effects of valproate overdosage. Because naloxone could theoretically also reverse the antiepileptic effects of valproate, it should be used with caution in patients with epilepsy.
Adverse reactions
Information about undesirable effects, reasonably associated with use of the drug, that may occur as part of the pharmacological action of the drug or may be unpredictable in its occurrence. Adverse reactions include those that occur with the drug, and if applicable, with drugs in the same pharmacologically active and chemically related class. There is considerable variation in the listing of adverse reactions. They may be categorized by organ system, by severity of reaction, by frequency, by toxicological mechanism, or by a combination of these.6 ADVERSE REACTIONS Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice. Most common adverse reactions (reported >5%) reported in patients are abdominal pain, accidental injury, alopecia, ambylopia/blurred vision, amnesia, anorexia, asthenia, ataxia, back pain, bronchitis, constipation, depression, diarrhea, diplopia, dizziness, dyspepsia, dyspnea, ecchymosis, emotional lability, fever, flu syndrome, headache, increased appetite, infection, insomnia, nausea, nervousness, nystagmus, peripheral edema, pharyngitis, rash, rhinitis, somnolence, thinking abnormal, thrombocytopenia, tinnitus, tremor, vomiting, weight gain, weight loss, ( 6.1 , 6.2 , 6.3 ). To report SUSPECTED ADVERSE REACTIONS, contact Dr. Reddy’s Laboratories Inc., at 1-888-375-3784 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch 6.1 Mania The incidence of treatment-emergent events has been ascertained based on combined data from two three week placebo-controlled clinical trials of divalproex sodium in the treatment of manic episodes associated with bipolar disorder. The adverse reactions were usually mild or moderate in intensity, but sometimes were serious enough to interrupt treatment. In clinical trials, the rates of premature termination due to intolerance were not statistically different between placebo, divalproex sodium, and lithium carbonate. A total of 4%, 8% and 11% of patients discontinued therapy due to intolerance in the placebo, divalproex sodium, and lithium carbonate groups, respectively. Table 2 summarizes those adverse reactions reported for patients in these trials where the incidence rate in the divalproex sodium-treated group was greater than 5% and greater than the placebo incidence, or where the incidence in the divalproex sodium-treated group was statistically significantly greater than the placebo group. Vomiting was the only reaction that was reported by significantly (p ≤ 0.05) more patients receiving divalproex sodium compared to placebo. Table 2. Adverse Reactions Reported by > 5% of Divalproex sodium-Treated Patients During Placebo-Controlled Trials of Acute Mania 1 Adverse Reaction Divalproex sodium (n = 89) Placebo (n = 97) Nausea 22% 15% Somnolence 19% 12% Dizziness 12% 4% Vomiting 12% 3% Accidental Injury 11% 5% Asthenia 10% 7% Abdominal pain 9% 8% Dyspepsia 9% 8% Rash 6% 3% 1. The following adverse reactions occurred at an equal or greater incidence for placebo than for Divalproex sodium: back pain, headache, constipation, diarrhea, tremor, and pharyngitis. The following additional adverse reactions were reported by greater than 1% but not more than 5% of the 89 divalproex sodium-treated patients in controlled clinical trials: Body as a Whole: Chest pain, chills, chills and fever, fever, neck pain, neck rigidity. Cardiovascular System: Hypertension, hypotension, palpitations, postural hypotension, tachycardia, vasodilation. Digestive System: Anorexia, fecal incontinence, flatulence, gastroenteritis, glossitis, periodontal abscess. Hemic and Lymphatic System: Ecchymosis. Metabolic and Nutritional Disorders: Edema, peripheral edema. Musculoskeletal System: Arthralgia, arthrosis, leg cramps, twitching. Nervous System: Abnormal dreams, abnormal gait, agitation, ataxia, catatonic reaction, confusion, depression, diplopia, dysarthria, hallucinations, hypertonia, hypokinesia, insomnia, paresthesia, reflexes increased, tardive dyskinesia, thinking abnormalities, vertigo. Respiratory System: Dyspnea, rhinitis. Skin and Appendages: Alopecia, discoid lupus erythematosus, dry skin, furunculosis, maculopapular rash, seborrhea. Special Senses: Amblyopia, conjunctivitis, deafness, dry eyes, ear pain, eye pain, tinnitus. Urogenital System: Dysmenorrhea, dysuria, urinary incontinence. 6.2 Epilepsy Based on a placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures, divalproex sodium was generally well tolerated with most adverse reactions rated as mild to moderate in severity. Intolerance was the primary reason for discontinuation in the divalproex sodium-treated patients (6%), compared to 1% of placebo-treated patients. Table 3 lists treatment-emergent adverse reactions which were reported by ≥ 5% of divalproex sodium-treated patients and for which the incidence was greater than in the placebo group, in the placebo-controlled trial of adjunctive therapy for treatment of complex partial seizures. Since patients were also treated with other antiepilepsy drugs, it is not possible, in most cases, to determine whether the following adverse reactions can be ascribed to divalproex sodium alone, or the combination of divalproex sodium and other antiepilepsy drugs. Table 3. Adverse Reactions Reported by ≥ 5% of Patients Treated with Divalproex sodium During Placebo-Controlled Trial of Adjunctive Therapy for Complex Partial Seizures Body System/Reaction Divalproex sodium (%) (n = 77) Placebo (%) (n = 70) Body as a Whole Headache 31 21 Asthenia 27 7 Fever 6 4 Gastrointestinal System Nausea 48 14 Vomiting 27 7 Abdominal Pain 23 6 Diarrhea 13 6 Anorexia 12 0 Dyspepsia 8 4 Constipation 5 1 Nervous System Somnolence 27 11 Tremor 25 6 Dizziness 25 13 Diplopia 16 9 Amblyopia/Blurred Vision 12 9 Ataxia 8 1 Nystagmus 8 1 Emotional Lability 6 4 Thinking Abnormal 6 0 Amnesia 5 1 Respiratory System Flu Syndrome 12 9 Infection 12 6 Bronchitis 5 1 Rhinitis 5 4 Other Alopecia 6 1 Weight Loss 6 0 Table 4 lists treatment-emergent adverse reactions which were reported by ≥ 5% of patients in the high dose valproate group, and for which the incidence was greater than in the low dose group, in a controlled trial of divalproex sodium monotherapy treatment of complex partial seizures. Since patients were being titrated off another antiepilepsy drug during the first portion of the trial, it is not possible, in many cases, to determine whether the following adverse reactions can be ascribed to Divalproex sodium alone, or the combination of valproate and other antiepilepsy drugs. Body System/Reaction High Dose (%) (n = 131) Low Dose (%) (n = 134) Body as a Whole Asthenia 21 10 Digestive System Nausea 34 26 Diarrhea 23 19 Vomiting 23 15 Abdominal Pain 12 9 Anorexia 11 4 Dyspepsia 11 10 Hemic/Lymphatic System Thrombocytopenia 24 1 Ecchymosis 5 4 Metabolic/Nutritional Weight Gain 9 4 Peripheral Edema 8 3 Nervous System Tremor 57 19 Somnolence 30 18 Dizziness 18 13 Insomnia 15 9 Nervousness 11 7 Amnesia 7 4 Nystagmus 7 1 Depression 5 4 Respiratory System Infection 20 13 Pharyngitis 8 2 Dyspnea 5 1 Skin and Appendages Alopecia 24 13 Special Senses Amblyopia/Blurred Vision 8 4 Tinnitus 7 1 1. Headache was the only adverse reaction that occurred in ≥ 5% of patients in the high dose group and at an equal or greater incidence in the low dose group. The following additional adverse reactions were reported by greater than 1% but less than 5% of the 358 patients treated with valproate in the controlled trials of complex partial seizures: Body as a Whole: Back pain, chest pain, malaise. Cardiovascular System: Tachycardia, hypertension, palpitation. Digestive System: Increased appetite, flatulence, hematemesis, eructation, pancreatitis, periodontal abscess. Hemic and Lymphatic System: Petechia. Metabolic and Nutritional Disorders: SGOT increased, SGPT increased. Musculoskeletal System: Myalgia, twitching, arthralgia, leg cramps, myasthenia. Nervous System: Anxiety, confusion, abnormal gait, paresthesia, hypertonia, incoordination, abnormal dreams, personality disorder. Respiratory System: Sinusitis, cough increased, pneumonia, epistaxis. Skin and Appendages: Rash, pruritus, dry skin. Special Senses: Taste perversion, abnormal vision, deafness, otitis media. Urogenital System: Urinary incontinence, vaginitis, dysmenorrhea, amenorrhea, urinary frequency. 6.3 Migraine Based on two placebo-controlled clinical trials and their long term extension, valproate was generally well tolerated with most adverse reactions rated as mild to moderate in severity. Of the 202 patients exposed to valproate in the placebo-controlled trials, 17% discontinued for intolerance. This is compared to a rate of 5% for the 81 placebo patients. Including the long term extension study, the adverse reactions reported as the primary reason for discontinuation by ≥ 1% of 248 valproate-treated patients were alopecia (6%), nausea and/or vomiting (5%), weight gain (2%), tremor (2%), somnolence (1%), elevated SGOT and/or SGPT (1%), and depression (1%). Table 5 includes those adverse reactions reported for patients in the placebo-controlled trials where the incidence rate in the divalproex sodium-treated group was greater than 5% and was greater than that for placebo patients. Table 5. Adverse Reactions Reported by > 5% of Divalproex sodium-Treated Patients During Migraine Placebo-Controlled Trials with a Greater Incidence Than Patients Taking Placebo 1 Body System Reaction Divalproex sodium (N = 202) Placebo (N = 81) Gastrointestinal System Nausea 31% 10% Dyspepsia 13% 9% Diarrhea 12% 7% Vomiting 11% 1% Abdominal pain 9% 4% Increased appetite 6% 4% Nervous System Asthenia 20% 9% Somnolence 17% 5% Dizziness 12% 6% Tremor 9% 0% Other Weight gain 8% 2% Back pain 8% 6% Alopecia 7% 1% 1. The following adverse reactions occurred in at least 5% of divalproex sodium-treated patients and at an equal or greater incidence for placebo than for divalproex sodium: flu syndrome and pharyngitis. The following additional adverse reactions were reported by greater than 1% but not more than 5% of the 202 divalproex sodium-treated patients in the controlled clinical trials: Body as a Whole: Chest pain, chills, face edema, fever and malaise. Cardiovascular System: Vasodilatation. Digestive System: Anorexia, constipation, dry mouth, flatulence, gastrointestinal disorder (unspecified), and stomatitis. Hemic and Lymphatic System: Ecchymosis. Metabolic and Nutritional Disorders: Peripheral edema, SGOT increase, and SGPT increase. Musculoskeletal System: Leg cramps and myalgia. Nervous System: Abnormal dreams, amnesia, confusion, depression, emotional lability, insomnia, nervousness, paresthesia, speech disorder, thinking abnormalities, and vertigo. Respiratory System: Cough increased, dyspnea, rhinitis, and sinusitis. Skin and Appendages: Pruritus and rash. Special Senses: Conjunctivitis, ear disorder, taste perversion, and tinnitus. Urogenital System: Cystitis, metrorrhagia, and vaginal hemorrhage. 6.4 Other Patient Populations Adverse reactions that have been reported with all dosage forms of valproate from epilepsy trials, spontaneous reports, and other sources are listed below by body system. Gastrointestinal The most commonly reported side effects at the initiation of therapy are nausea, vomiting, and indigestion. These effects are usually transient and rarely require discontinuation of therapy. Diarrhea, abdominal cramps, and constipation have been reported. Both anorexia with some weight loss and increased appetite with weight gain have also been reported. The administration of delayed-release divalproex sodium may result in reduction of gastrointestinal side effects in some patients. CNS Effects Sedative effects have occurred in patients receiving valproate alone but occur most often in patients receiving combination therapy. Sedation usually abates upon reduction of other antiepileptic medication. Tremor (may be dose-related), hallucinations, ataxia, headache, nystagmus, diplopia, asterixis, "spots before eyes", dysarthria, dizziness, confusion, hypesthesia, vertigo, incoordination, and parkinsonism have been reported with the use of valproate. Rare cases of coma have occurred in patients receiving valproate alone or in conjunction with phenobarbital. In rare instances encephalopathy with or without fever has developed shortly after the introduction of valproate monotherapy without evidence of hepatic dysfunction or inappropriately high plasma valproate levels. Although recovery has been described following drug withdrawal, there have been fatalities in patients with hyperammonemic encephalopathy, particularly in patients with underlying urea cycle disorders [see Warnings and Precautions (5.5) ]. Several reports have noted reversible cerebral atrophy and dementia in association with valproate therapy. Dermatologic Transient hair loss, skin rash, photosensitivity, generalized pruritus, erythema multiforme, and Stevens-Johnson syndrome. Rare cases of toxic epidermal necrolysis have been reported including a fatal case in a 6 month old infant taking valproate and several other concomitant medications. An additional case of toxic epidermal necrosis resulting in death was reported in a 35 year old patient with AIDS taking several concomitant medications and with a history of multiple cutaneous drug reactions. Serious skin reactions have been reported with concomitant administration of lamotrigine and valproate [see Drug Interactions (7.2) ]. Psychiatric Emotional upset, depression, psychosis, aggression, hyperactivity, hostility, and behavioral deterioration. Musculoskeletal Weakness. Hematologic Thrombocytopenia and inhibition of the secondary phase of platelet aggregation may be reflected in altered bleeding time, petechiae, bruising, hematoma formation, epistaxis, and frank hemorrhage [see Warnings and Precautions (5.7) and Drug Interactions (7) ]. Relative lymphocytosis, macrocytosis, hypofibrinogenemia, leucopenia, eosinophilia, anemia including macrocytic with or without folate deficiency, bone marrow suppression, pancytopenia, aplastic anemia, agranulocytosis, and acute intermittent porphyria. Hepatic Minor elevations of transaminases (e.g., SGOT and SGPT) and LDH are frequent and appear to be dose-related. Occasionally, laboratory test results include increases in serum bilirubin and abnormal changes in other liver function tests. These results may reflect potentially serious hepatotoxicity [see Warnings and Precautions (5.1) ]. Endocrine Irregular menses, secondary amenorrhea, breast enlargement, galactorrhea, and parotid gland swelling. Abnormal thyroid function tests [see Warnings and Precautions (5.15) ]. There have been rare spontaneous reports of polycystic ovary disease. A cause and effect relationship has not been established. Pancreatic Acute pancreatitis including fatalities [see Warnings and Precautions (5.4) ]. Metabolic Hyperammonemia [see Warnings and Precautions (5.8) ], hyponatremia, and inappropriate ADH secretion. There have been rare reports of Fanconi's syndrome occurring chiefly in children. Decreased carnitine concentrations have been reported although the clinical relevance is undetermined. Hyperglycinemia has occurred and was associated with a fatal outcome in a patient with preexistent nonketotic hyperglycinemia. Genitourinary Enuresis and urinary tract infection. Special Senses Hearing loss, either reversible or irreversible, has been reported; however, a cause and effect relationship has not been established. Ear pain has also been reported. Other Allergic reaction, anaphylaxis, edema of the extremities, lupus erythematosus, bone pain, cough increased, pneumonia, otitis media, bradycardia, cutaneous vasculitis, fever, and hypothermia. There have been reports of developmental delay, autism and/or autism spectrum disorder in the offspring of women exposed to valproate during pregnancy.
| | |
Nausea | 22% | 15% |
Somnolence | 19% | 12% |
Dizziness | 12% | 4% |
Vomiting | 12% | 3% |
Accidental Injury | 11% | 5% |
Asthenia | 10% | 7% |
Abdominal pain | 9% | 8% |
Dyspepsia | 9% | 8% |
Rash | 6% | 3% |
| | | |
| |||
Headache | 31 | 21 | |
Asthenia | 27 | 7 | |
Fever | 6 | 4 | |
| |||
Nausea | 48 | 14 | |
Vomiting | 27 | 7 | |
Abdominal Pain | 23 | 6 | |
Diarrhea | 13 | 6 | |
Anorexia | 12 | 0 | |
Dyspepsia | 8 | 4 | |
Constipation | 5 | 1 | |
| |||
Somnolence | 27 | 11 | |
Tremor | 25 | 6 | |
Dizziness | 25 | 13 | |
Diplopia | 16 | 9 | |
Amblyopia/Blurred Vision | 12 | 9 | |
Ataxia | 8 | 1 | |
Nystagmus | 8 | 1 | |
Emotional Lability | 6 | 4 | |
Thinking Abnormal | 6 | 0 | |
Amnesia | 5 | 1 | |
| |||
Flu Syndrome | 12 | 9 | |
Infection | 12 | 6 | |
Bronchitis | 5 | 1 | |
Rhinitis | 5 | 4 | |
| |||
Alopecia | 6 | 1 | |
Weight Loss | 6 | 0 |
| | | ||
| ||||
Asthenia | 21 | 10 | ||
| ||||
Nausea | 34 | 26 | ||
Diarrhea | 23 | 19 | ||
Vomiting | 23 | 15 | ||
Abdominal Pain | 12 | 9 | ||
Anorexia | 11 | 4 | ||
Dyspepsia | 11 | 10 | ||
| ||||
Thrombocytopenia | 24 | 1 | ||
Ecchymosis | 5 | 4 | ||
| ||||
Weight Gain | 9 | 4 | ||
Peripheral Edema | 8 | 3 | ||
| ||||
Tremor | 57 | 19 | ||
Somnolence | 30 | 18 | ||
Dizziness | 18 | 13 | ||
Insomnia | 15 | 9 | ||
Nervousness | 11 | 7 | ||
Amnesia | 7 | 4 | ||
Nystagmus | 7 | 1 | ||
Depression | 5 | 4 | ||
| ||||
Infection | 20 | 13 | ||
Pharyngitis | 8 | 2 | ||
Dyspnea | 5 | 1 | ||
| ||||
Alopecia | 24 | 13 | ||
| ||||
Amblyopia/Blurred Vision | 8 | 4 | ||
Tinnitus | 7 | 1 |
| | |
| ||
Nausea | 31% | 10% |
Dyspepsia | 13% | 9% |
Diarrhea | 12% | 7% |
Vomiting | 11% | 1% |
Abdominal pain | 9% | 4% |
Increased appetite | 6% | 4% |
| ||
Asthenia | 20% | 9% |
Somnolence | 17% | 5% |
Dizziness | 12% | 6% |
Tremor | 9% | 0% |
| ||
Weight gain | 8% | 2% |
Back pain | 8% | 6% |
Alopecia | 7% | 1% |
divalproex sodium Drug Interactions
Information about and practical guidance on preventing clinically significant drug/drug and drug/food interactions that may occur in people taking the drug.7 DRUG INTERACTIONS Hepatic enzyme-inducing drugs (e.g., phenytoin, carbamazepine, primidone, phenobarbital, rifampin) can increase valproate clearance, while enzyme inhibitors (e.g., felbamate) can decrease valproate clearance. Therefore increased monitoring of valproate and concomitant drug concentrations and dose adjustment is indicated whenever enzyme-inducing or inhibiting drugs are introduced or withdrawn (7.1) Aspirin, carbapenem antibiotics: Monitoring of valproate concentrations are recommended (7.1) Co-administration of valproate can affect the pharmacokinetics of other drugs (e.g. diazepam, ethosuximide, lamotrigine, phenytoin) by inhibiting their metabolism or protein binding displacement (7.2) Dosage adjustment of amitryptyline/nortryptyline, warfarin, and zidovudine may be necessary if used concomitantly with divalproex sodium (7.2) Topiramate: Hyperammonemia and encephalopathy ( 5.9 , 7.3) 7.1 Effects of Co-Administered Drugs on Valproate Clearance Drugs that affect the level of expression of hepatic enzymes, particularly those that elevate levels of glucuronosyltransferases, may increase the clearance of valproate. For example, phenytoin, carbamazepine, and phenobarbital (or primidone) can double the clearance of valproate. Thus, patients on monotherapy will generally have longer half-lives and higher concentrations than patients receiving polytherapy with antiepilepsy drugs. In contrast, drugs that are inhibitors of cytochrome P450 isozymes, e.g., antidepressants, may be expected to have little effect on valproate clearance because cytochrome P450 microsomal mediated oxidation is a relatively minor secondary metabolic pathway compared to glucuronidation and beta-oxidation. Because of these changes in valproate clearance, monitoring of valproate and concomitant drug concentrations should be increased whenever enzyme inducing drugs are introduced or withdrawn. The following list provides information about the potential for an influence of several commonly prescribed medications on valproate pharmacokinetics. The list is not exhaustive nor could it be, since new interactions are continuously being reported. Drugs for which a potentially important interaction has been observed Aspirin A study involving the co-administration of aspirin at antipyretic doses (11 to 16 mg/kg) with valproate to pediatric patients (n=6) revealed a decrease in protein binding and an inhibition of metabolism of valproate. Valproate free fraction was increased 4-fold in the presence of aspirin compared to valproate alone. The β-oxidation pathway consisting of 2-E-valproic acid, 3-OH-valproic acid, and 3-keto valproic acid was decreased from 25% of total metabolites excreted on valproate alone to 8.3% in the presence of aspirin. Caution should be observed if valproate and aspirin are to be co-administered. Carbapenem antibiotics A clinically significant reduction in serum valproic acid concentration has been reported in patients receiving carbapenem antibiotics (for example, ertapenem, imipenem, meropenem; this is not a complete list) and may result in loss of seizure control. The mechanism of this interaction in not well understood. Serum valproic acid concentrations should be monitored frequently after initiating carbapenem therapy. Alternative antibacterial or anticonvulsant therapy should be considered if serum valproic acid concentrations drop significantly or seizure control deteriorates [see Warnings and Precautions (5.12) ]. Felbamate A study involving the co-administration of 1,200 mg/day of felbamate with valproate to patients with epilepsy (n=10) revealed an increase in mean valproate peak concentration by 35% (from 86 to 115 mcg/mL) compared to valproate alone. Increasing the felbamate dose to 2,400 mg/day increased the mean valproate peak concentration to 133 mcg/mL (another 16% increase). A decrease in valproate dosage may be necessary when felbamate therapy is initiated. Rifampin A study involving the administration of a single dose of valproate (7 mg/kg) 36 hours after 5 nights of daily dosing with rifampin (600 mg) revealed a 40% increase in the oral clearance of valproate. Valproate dosage adjustment may be necessary when it is co-administered with rifampin. Drugs for which either no interaction or a likely clinically unimportant interaction has been observed Antacids A study involving the co-administration of valproate 500 mg with commonly administered antacids (Maalox, Trisogel, and Titralac - 160 mEq doses) did not reveal any effect on the extent of absorption of valproate. Chlorpromazine A study involving the administration of 100 to 300 mg/day of chlorpromazine to schizophrenic patients already receiving valproate (200 mg BID) revealed a 15% increase in trough plasma levels of valproate. Haloperidol A study involving the administration of 6 to 10 mg/day of haloperidol to schizophrenic patients already receiving valproate (200 mg BID) revealed no significant changes in valproate trough plasma levels. Cimetidine and Ranitidine Cimetidine and ranitidine do not affect the clearance of valproate. 7.2 Effects of Valproate on Other Drugs Valproate has been found to be a weak inhibitor of some P450 isozymes, epoxide hydrase, and glucuronosyltransferases. The following list provides information about the potential for an influence of valproate co-administration on the pharmacokinetics or pharmacodynamics of several commonly prescribed medications. The list is not exhaustive, since new interactions are continuously being reported. Drugs for which a potentially important valproate interaction has been observed Amitriptyline/Nortriptyline Administration of a single oral 50 mg dose of amitriptyline to 15 normal volunteers (10 males and 5 females) who received valproate (500 mg BID) resulted in a 21% decrease in plasma clearance of amitriptyline and a 34% decrease in the net clearance of nortriptyline. Rare postmarketing reports of concurrent use of valproate and amitriptyline resulting in an increased amitriptyline level have been received. Concurrent use of valproate and amitriptyline has rarely been associated with toxicity. Monitoring of amitriptyline levels should be considered for patients taking valproate concomitantly with amitriptyline. Consideration should be given to lowering the dose of amitriptyline/nortriptyline in the presence of valproate. Carbamazepine/carbamazepine-10,11-Epoxide Serum levels of carbamazepine (CBZ) decreased 17% while that of carbamazepine-10,11-epoxide (CBZ-E) increased by 45% upon co-administration of valproate and CBZ to epileptic patients. Clonazepam The concomitant use of valproate and clonazepam may induce absence status in patients with a history of absence type seizures. Diazepam Valproate displaces diazepam from its plasma albumin binding sites and inhibits its metabolism. Coadministration of valproate (1,500 mg daily) increased the free fraction of diazepam (10 mg) by 90% in healthy volunteers (n=6). Plasma clearance and volume of distribution for free diazepam were reduced by 25% and 20%, respectively, in the presence of valproate. The elimination half-life of diazepam remained unchanged upon addition of valproate. Ethosuximide Valproate inhibits the metabolism of ethosuximide. Administration of a single ethosuximide dose of 500 mg with valproate (800 to 1,600 mg/day) to healthy volunteers (n=6) was accompanied by a 25% increase in elimination half-life of ethosuximide and a 15% decrease in its total clearance as compared to ethosuximide alone. Patients receiving valproate and ethosuximide, especially along with other anticonvulsants, should be monitored for alterations in serum concentrations of both drugs. Lamotrigine In a steady-state study involving 10 healthy volunteers, the elimination half-life of lamotrigine increased from 26 to 70 hours with valproate co-administration (a 165% increase). The dose of lamotrigine should be reduced when co-administered with valproate. Serious skin reactions (such as Stevens-Johnson syndrome and toxic epidermal necrolysis) have been reported with concomitant lamotrigine and valproate administration. See lamotrigine package insert for details on lamotrigine dosing with concomitant valproate administration. Phenobarbital Valproate was found to inhibit the metabolism of phenobarbital. Co-administration of valproate (250 mg BID for 14 days) with phenobarbital to normal subjects (n=6) resulted in a 50% increase in half-life and a 30% decrease in plasma clearance of phenobarbital (60 mg single-dose). The fraction of phenobarbital dose excreted unchanged increased by 50% in presence of valproate. There is evidence for severe CNS depression, with or without significant elevations of barbiturate or valproate serum concentrations. All patients receiving concomitant barbiturate therapy should be closely monitored for neurological toxicity. Serum barbiturate concentrations should be obtained, if possible, and the barbiturate dosage decreased, if appropriate. Primidone, which is metabolized to a barbiturate, may be involved in a similar interaction with valproate. Phenytoin Valproate displaces phenytoin from its plasma albumin binding sites and inhibits its hepatic metabolism. Coadministration of valproate (400 mg TID) with phenytoin (250 mg) in normal volunteers (n=7) was associated with a 60% increase in the free fraction of phenytoin. Total plasma clearance and apparent volume of distribution of phenytoin increased 30% in the presence of valproate. Both the clearance and apparent volume of distribution of free phenytoin were reduced by 25%. In patients with epilepsy, there have been reports of breakthrough seizures occurring with the combination of valproate and phenytoin. The dosage of phenytoin should be adjusted as required by the clinical situation. Tolbutamide From in vitro experiments, the unbound fraction of tolbutamide was increased from 20% to 50% when added to plasma samples taken from patients treated with valproate. The clinical relevance of this displacement is unknown. Warfarin In an in vitro study, valproate increased the unbound fraction of warfarin by up to 32.6%. The therapeutic relevance of this is unknown; however, coagulation tests should be monitored if valproate therapy is instituted in patients taking anticoagulants. Zidovudine In six patients who were seropositive for HIV, the clearance of zidovudine (100 mg q8h) was decreased by 38% after administration of valproate (250 or 500 mg q8h); the half-life of zidovudine was unaffected. Drugs for which either no interaction or a likely clinically unimportant interaction has been observed Acetaminophen Valproate had no effect on any of the pharmacokinetic parameters of acetaminophen when it was concurrently administered to three epileptic patients. Clozapine In psychotic patients (n=11), no interaction was observed when valproate was co-administered with clozapine. Lithium Co-administration of valproate (500 mg BID) and lithium carbonate (300 mg TID) to normal male volunteers (n=16) had no effect on the steady-state kinetics of lithium. Lorazepam Concomitant administration of valproate (500 mg BID) and lorazepam (1 mg BID) in normal male volunteers (n=9) was accompanied by a 17% decrease in the plasma clearance of lorazepam. Oral Contraceptive Steroids Administration of a single-dose of ethinyloestradiol (50 mcg)/levonorgestrel (250 mcg) to 6 women on valproate (200 mg BID) therapy for 2 months did not reveal any pharmacokinetic interaction. 7.3 Topiramate Concomitant administration of valproate and topiramate has been associated with hyperammonemia with and without encephalopathy [see Contraindications (4) and Warnings and Precautions ( 5.5 , 5.8 , 5.9 ) ]. Concomitant administration of topiramate with valproate has also been associated with hypothermia in patients who have tolerated either drug alone. It may be prudent to examine blood ammonia levels in patients in whom the onset of hypothermia has been reported [see Warnings and Precautions ( 5.8 , 5.10 ) ].
Clinical pharmacology
Information about the clinical pharmacology and actions of the drug in humans.12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Divalproex sodium dissociates to the valproate ion in the gastrointestinal tract. The mechanisms by which valproate exerts its therapeutic effects have not been established. It has been suggested that its activity in epilepsy is related to increased brain concentrations of gamma-aminobutyric acid (GABA). 12.2 Pharmacodynamics The relationship between plasma concentration and clinical response is not well documented. One contributing factor is the nonlinear, concentration dependent protein binding of valproate which affects the clearance of the drug. Thus, monitoring of total serum valproate cannot provide a reliable index of the bioactive valproate species. For example, because the plasma protein binding of valproate is concentration dependent, the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Higher than expected free fractions occur in the elderly, in hyperlipidemic patients, and in patients with hepatic and renal diseases. Epilepsy The therapeutic range in epilepsy is commonly considered to be 50 to 100 mcg/mL of total valproate, although some patients may be controlled with lower or higher plasma concentrations. Mania In placebo-controlled clinical trials of acute mania, patients were dosed to clinical response with trough plasma concentrations between 50 and 125 mcg/mL [see Dosage and Administration (2.1) ]. 12.3 Pharmacokinetics Absorption/Bioavailability Equivalent oral doses of divalproex sodium products and valproic acid capsules deliver equivalent quantities of valproate ion systemically. Although the rate of valproate ion absorption may vary with the formulation administered (liquid, solid, or sprinkle), conditions of use (e.g., fasting or postprandial) and the method of administration (e.g., whether the contents of the capsule are sprinkled on food or the capsule is taken intact), these differences should be of minor clinical importance under the steady state conditions achieved in chronic use in the treatment of epilepsy. However, it is possible that differences among the various valproate products in T max and C max could be important upon initiation of treatment. For example, in single dose studies, the effect of feeding had a greater influence on the rate of absorption of the tablet (increase in T max from 4 to 8 hours) than on the absorption of the sprinkle capsules (increase in T max from 3.3 to 4.8 hours). While the absorption rate from the G.I. tract and fluctuation in valproate plasma concentrations vary with dosing regimen and formulation, the efficacy of valproate as an anticonvulsant in chronic use is unlikely to be affected. Experience employing dosing regimens from once-a-day to four-times-a-day, as well as studies in primate epilepsy models involving constant rate infusion, indicate that total daily systemic bioavailability (extent of absorption) is the primary determinant of seizure control and that differences in the ratios of plasma peak to trough concentrations between valproate formulations are inconsequential from a practical clinical standpoint. Whether or not rate of absorption influences the efficacy of valproate as an antimanic or antimigraine agent is unknown. Co-administration of oral valproate products with food and substitution among the various divalproex sodium and valproic acid formulations should cause no clinical problems in the management of patients with epilepsy [see Dosage and Administration (2.2) ]. Nonetheless, any changes in dosage administration, or the addition or discontinuance of concomitant drugs should ordinarily be accompanied by close monitoring of clinical status and valproate plasma concentrations. Distribution Protein Binding The plasma protein binding of valproate is concentration dependent and the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Protein binding of valproate is reduced in the elderly, in patients with chronic hepatic diseases, in patients with renal impairment, and in the presence of other drugs (e.g., aspirin). Conversely, valproate may displace certain protein-bound drugs (e.g., phenytoin, carbamazepine, warfarin, and tolbutamide) [see Drug Interactions (7.2) for more detailed information on the pharmacokinetic interactions of valproate with other drugs]. CNS Distribution Valproate concentrations in cerebrospinal fluid (CSF) approximate unbound concentrations in plasma (about 10% of total concentration). Metabolism Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30 to 50% of an administered dose appears in urine as a glucuronide conjugate. Mitochondrial β-oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose. Usually, less than 15 to 20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine. The relationship between dose and total valproate concentration is nonlinear; concentration does not increase proportionally with the dose, but rather, increases to a lesser extent due to saturable plasma protein binding. The kinetics of unbound drug are linear. Elimination Mean plasma clearance and volume of distribution for total valproate are 0.56 L/hr/1.73 m 2 and 11 L/1.73 m 2 , respectively. Mean plasma clearance and volume of distribution for free valproate are 4.6 L/hr/1.73 m 2 and 92 L/1.73 m 2 . Mean terminal half-life for valproate monotherapy ranged from 9 to 16 hours following oral dosing regimens of 250 to 1,000 mg. The estimates cited apply primarily to patients who are not taking drugs that affect hepatic metabolizing enzyme systems. For example, patients taking enzyme-inducing antiepileptic drugs (carbamazepine, phenytoin, and phenobarbital) will clear valproate more rapidly. Because of these changes in valproate clearance, monitoring of antiepileptic concentrations should be intensified whenever concomitant antiepileptics are introduced or withdrawn. Special Populations Effect of Age Neonates Children within the first two months of life have a markedly decreased ability to eliminate valproate compared to older children and adults. This is a result of reduced clearance (perhaps due to delay in development of glucuronosyltransferase and other enzyme systems involved in valproate elimination) as well as increased volume of distribution (in part due to decreased plasma protein binding). For example, in one study, the half-life in children under 10 days ranged from 10 to 67 hours compared to a range of 7 to 13 hours in children greater than 2 months. Children Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. Elderly The capacity of elderly patients (age range: 68 to 89 years) to eliminate valproate has been shown to be reduced compared to younger adults (age range: 22 to 26). Intrinsic clearance is reduced by 39%; the free fraction is increased by 44%. Accordingly, the initial dosage should be reduced in the elderly [see Dosage and Administration (2.4) ]. Effect of Sex There are no differences in the body surface area adjusted unbound clearance between males and females (4.8±0.17 and 4.7±0.07 L/hr per 1.73 m 2 , respectively). Effect of Race The effects of race on the kinetics of valproate have not been studied. Effect of Disease Liver Disease Liver disease impairs the capacity to eliminate valproate. In one study, the clearance of free valproate was decreased by 50% in 7 patients with cirrhosis and by 16% in 4 patients with acute hepatitis, compared with 6 healthy subjects. In that study, the half-life of valproate was increased from 12 to 18 hours. Liver disease is also associated with decreased albumin concentrations and larger unbound fractions (2 to 2.6 fold increase) of valproate. Accordingly, monitoring of total concentrations may be misleading since free concentrations may be substantially elevated in patients with hepatic disease whereas total concentrations may appear to be normal [see Boxed Warning , Contraindications (4) , and Warnings and Precautions (5.1) ]. Renal Disease A slight reduction (27%) in the unbound clearance of valproate has been reported in patients with renal failure (creatinine clearance < 10 mL/minute); however, hemodialysis typically reduces valproate concentrations by about 20%. Therefore, no dosage adjustment appears to be necessary in patients with renal failure. Protein binding in these patients is substantially reduced; thus, monitoring total concentrations may be misleading.
Mechanism of action
Information about the established mechanism(s) of the drugÕs action in humans at various levels (for example receptor, membrane, tissue, organ, whole body). If the mechanism of action is not known, this field contains a statement about the lack of information.12.1 Mechanism of Action Divalproex sodium dissociates to the valproate ion in the gastrointestinal tract. The mechanisms by which valproate exerts its therapeutic effects have not been established. It has been suggested that its activity in epilepsy is related to increased brain concentrations of gamma-aminobutyric acid (GABA).
Pharmacodynamics
Information about any biochemical or physiologic pharmacologic effects of the drug or active metabolites related to the drugÕs clinical effect in preventing, diagnosing, mitigating, curing, or treating disease, or those related to adverse effects or toxicity.12.2 Pharmacodynamics The relationship between plasma concentration and clinical response is not well documented. One contributing factor is the nonlinear, concentration dependent protein binding of valproate which affects the clearance of the drug. Thus, monitoring of total serum valproate cannot provide a reliable index of the bioactive valproate species. For example, because the plasma protein binding of valproate is concentration dependent, the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Higher than expected free fractions occur in the elderly, in hyperlipidemic patients, and in patients with hepatic and renal diseases. Epilepsy The therapeutic range in epilepsy is commonly considered to be 50 to 100 mcg/mL of total valproate, although some patients may be controlled with lower or higher plasma concentrations. Mania In placebo-controlled clinical trials of acute mania, patients were dosed to clinical response with trough plasma concentrations between 50 and 125 mcg/mL [see Dosage and Administration (2.1) ].
Pharmacokinetics
Information about the clinically significant pharmacokinetics of a drug or active metabolites, for instance pertinent absorption, distribution, metabolism, and excretion parameters.12.3 Pharmacokinetics Absorption/Bioavailability Equivalent oral doses of divalproex sodium products and valproic acid capsules deliver equivalent quantities of valproate ion systemically. Although the rate of valproate ion absorption may vary with the formulation administered (liquid, solid, or sprinkle), conditions of use (e.g., fasting or postprandial) and the method of administration (e.g., whether the contents of the capsule are sprinkled on food or the capsule is taken intact), these differences should be of minor clinical importance under the steady state conditions achieved in chronic use in the treatment of epilepsy. However, it is possible that differences among the various valproate products in T max and C max could be important upon initiation of treatment. For example, in single dose studies, the effect of feeding had a greater influence on the rate of absorption of the tablet (increase in T max from 4 to 8 hours) than on the absorption of the sprinkle capsules (increase in T max from 3.3 to 4.8 hours). While the absorption rate from the G.I. tract and fluctuation in valproate plasma concentrations vary with dosing regimen and formulation, the efficacy of valproate as an anticonvulsant in chronic use is unlikely to be affected. Experience employing dosing regimens from once-a-day to four-times-a-day, as well as studies in primate epilepsy models involving constant rate infusion, indicate that total daily systemic bioavailability (extent of absorption) is the primary determinant of seizure control and that differences in the ratios of plasma peak to trough concentrations between valproate formulations are inconsequential from a practical clinical standpoint. Whether or not rate of absorption influences the efficacy of valproate as an antimanic or antimigraine agent is unknown. Co-administration of oral valproate products with food and substitution among the various divalproex sodium and valproic acid formulations should cause no clinical problems in the management of patients with epilepsy [see Dosage and Administration (2.2) ]. Nonetheless, any changes in dosage administration, or the addition or discontinuance of concomitant drugs should ordinarily be accompanied by close monitoring of clinical status and valproate plasma concentrations. Distribution Protein Binding The plasma protein binding of valproate is concentration dependent and the free fraction increases from approximately 10% at 40 mcg/mL to 18.5% at 130 mcg/mL. Protein binding of valproate is reduced in the elderly, in patients with chronic hepatic diseases, in patients with renal impairment, and in the presence of other drugs (e.g., aspirin). Conversely, valproate may displace certain protein-bound drugs (e.g., phenytoin, carbamazepine, warfarin, and tolbutamide) [see Drug Interactions (7.2) for more detailed information on the pharmacokinetic interactions of valproate with other drugs]. CNS Distribution Valproate concentrations in cerebrospinal fluid (CSF) approximate unbound concentrations in plasma (about 10% of total concentration). Metabolism Valproate is metabolized almost entirely by the liver. In adult patients on monotherapy, 30 to 50% of an administered dose appears in urine as a glucuronide conjugate. Mitochondrial β-oxidation is the other major metabolic pathway, typically accounting for over 40% of the dose. Usually, less than 15 to 20% of the dose is eliminated by other oxidative mechanisms. Less than 3% of an administered dose is excreted unchanged in urine. The relationship between dose and total valproate concentration is nonlinear; concentration does not increase proportionally with the dose, but rather, increases to a lesser extent due to saturable plasma protein binding. The kinetics of unbound drug are linear. Elimination Mean plasma clearance and volume of distribution for total valproate are 0.56 L/hr/1.73 m 2 and 11 L/1.73 m 2 , respectively. Mean plasma clearance and volume of distribution for free valproate are 4.6 L/hr/1.73 m 2 and 92 L/1.73 m 2 . Mean terminal half-life for valproate monotherapy ranged from 9 to 16 hours following oral dosing regimens of 250 to 1,000 mg. The estimates cited apply primarily to patients who are not taking drugs that affect hepatic metabolizing enzyme systems. For example, patients taking enzyme-inducing antiepileptic drugs (carbamazepine, phenytoin, and phenobarbital) will clear valproate more rapidly. Because of these changes in valproate clearance, monitoring of antiepileptic concentrations should be intensified whenever concomitant antiepileptics are introduced or withdrawn. Special Populations Effect of Age Neonates Children within the first two months of life have a markedly decreased ability to eliminate valproate compared to older children and adults. This is a result of reduced clearance (perhaps due to delay in development of glucuronosyltransferase and other enzyme systems involved in valproate elimination) as well as increased volume of distribution (in part due to decreased plasma protein binding). For example, in one study, the half-life in children under 10 days ranged from 10 to 67 hours compared to a range of 7 to 13 hours in children greater than 2 months. Children Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. Elderly The capacity of elderly patients (age range: 68 to 89 years) to eliminate valproate has been shown to be reduced compared to younger adults (age range: 22 to 26). Intrinsic clearance is reduced by 39%; the free fraction is increased by 44%. Accordingly, the initial dosage should be reduced in the elderly [see Dosage and Administration (2.4) ]. Effect of Sex There are no differences in the body surface area adjusted unbound clearance between males and females (4.8±0.17 and 4.7±0.07 L/hr per 1.73 m 2 , respectively). Effect of Race The effects of race on the kinetics of valproate have not been studied. Effect of Disease Liver Disease Liver disease impairs the capacity to eliminate valproate. In one study, the clearance of free valproate was decreased by 50% in 7 patients with cirrhosis and by 16% in 4 patients with acute hepatitis, compared with 6 healthy subjects. In that study, the half-life of valproate was increased from 12 to 18 hours. Liver disease is also associated with decreased albumin concentrations and larger unbound fractions (2 to 2.6 fold increase) of valproate. Accordingly, monitoring of total concentrations may be misleading since free concentrations may be substantially elevated in patients with hepatic disease whereas total concentrations may appear to be normal [see Boxed Warning , Contraindications (4) , and Warnings and Precautions (5.1) ]. Renal Disease A slight reduction (27%) in the unbound clearance of valproate has been reported in patients with renal failure (creatinine clearance < 10 mL/minute); however, hemodialysis typically reduces valproate concentrations by about 20%. Therefore, no dosage adjustment appears to be necessary in patients with renal failure. Protein binding in these patients is substantially reduced; thus, monitoring total concentrations may be misleading.
Contraindications
Information about situations in which the drug product is contraindicated or should not be used because the risk of use clearly outweighs any possible benefit, including the type and nature of reactions that have been reported.4 CONTRAINDICATIONS Divalproex sodium should not be administered to patients with hepatic disease or significant hepatic dysfunction [see Warnings and Precautions (5.1) ]. Divalproex sodium is contraindicated in patients with known hypersensitivity to the drug [see Warnings and Precautions (5.11) ]. Divalproex sodium is contraindicated in patients with known urea cycle disorders [see Warnings and Precautions (5.5) ]. Hepatic disease or significant hepatic dysfunction ( 4 , 5.1 ) Known hypersensitivity to the drug ( 4 , 5.11 ) Urea cycle disorders ( 4 , 5.5 )
Description
General information about the drug product, including the proprietary and established name of the drug, the type of dosage form and route of administration to which the label applies, qualitative and quantitative ingredient information, the pharmacologic or therapeutic class of the drug, and the chemical name and structural formula of the drug.11 DESCRIPTION Divalproex sodium USP is a stable co-ordination compound comprised of sodium valproate and valproic acid in a 1:1 molar relationship and formed during the partial neutralization of valproic acid with 0.5 equivalent of sodium hydroxide. Chemically it is designated as sodium hydrogen bis(2-propylpentanoate). Divalproex sodium USP has the following structure: Divalproex sodium USP occurs as a white to off white powder with a characteristic odor. Divalproex sodium delayed-release tablets USP are for oral administration. Divalproex sodium delayed-release tablets USP are supplied in three dosage strengths containing divalproex sodium USP equivalent to 125 mg, 250 mg, or 500 mg of valproic acid. Inactive Ingredients Divalproex sodium delayed-release tablets USP, contain the following inactive ingredients: Acetone, diacetylated monoglycerides, hypromellose, hypromellose phthalate, isopropyl alcohol, methylene chloride, microcrystalline cellulose, povidone, pregelatinized starch, silicon dioxide, talc, titanium dioxide ,vanillin and opacode black as printing ink. Opacode black contains shellac glaze, iron oxide black,n-butyl alcohol, industrial methylated spirit lecithin, antifoam DC 1510. In addition, individual tablets contain: 125 mg tablets: Ferric oxide (Iron oxide brown). 250 mg tablets: Ferric oxide (Iron oxide yellow). 500 mg tablets: Ferric oxide (Iron oxide red).
Dosage and administration
Information about the drug product’s dosage and administration recommendations, including starting dose, dose range, titration regimens, and any other clinically sigificant information that affects dosing recommendations.2 DOSAGE AND ADMINISTRATION Divalproex sodium delayed-release tablets are intended for oral administration. Divalproex sodium delayed-release tablets should be swallowed whole and should not be crushed or chewed. Patients should be informed to take divalproex sodium delayed-release tablets every day as prescribed. If a dose is missed it should be taken as soon as possible, unless it is almost time for the next dose. If a dose is skipped, the patient should not double the next dose. Divalproex sodium delayed-release tablets are administered orally in divided doses. Divalproex sodium delayed-release tablets should be swallowed whole and should not be crushed or chewed. ( 2.1 , 2.2 ) Mania: Initial dose is 750 mg daily increasing as rapidly as possible to achieve therapeutic response or desired plasma level (2.1) . The maximum recommended dosage is 60 mg/kg/day. ( 2.1 , 2.2 ) Complex Partial Seizures: Start at 10 to 15 mg/kg/day, increasing at 1 week intervals by 5 to 10 mg/kg/day to achieve optimal clinical response; if response is not satisfactory, check valproate plasma level; see full prescribing information for conversion to monotherapy (2.2) . The maximum recommended dosage is 60 mg/kg/day. ( 2.1 , 2.2 ) Absence Seizures: Start at 15 mg/kg/day, increasing at 1 week intervals by 5 to 10 mg/kg/day until seizure control or limiting side effects (2.2) . The maximum recommended dosage is 60 mg/kg/day. ( 2.1 , 2.2 ) Migraine: The recommended starting dose is 250 mg twice daily, thereafter increasing to a maximum of 1000 mg/day as needed. (2.3) 2.1 Mania Divalproex sodium delayed-release tablets are administered orally. The recommended initial dose is 750 mg daily in divided doses. The dose should be increased as rapidly as possible to achieve the lowest therapeutic dose which produces the desired clinical effect or the desired range of plasma concentrations. In placebo-controlled clinical trials of acute mania, patients were dosed to a clinical response with a trough plasma concentration between 50 and 125 mcg/mL. Maximum concentrations were generally achieved within 14 days. The maximum recommended dosage is 60 mg/kg/day. There is no body of evidence available from controlled trials to guide a clinician in the longer term management of a patient who improves during divalproex sodium delayed-release tablets treatment of an acute manic episode. While it is generally agreed that pharmacological treatment beyond an acute response in mania is desirable, both for maintenance of the initial response and for prevention of new manic episodes, there are no data to support the benefits of divalproex sodium delayed-release tablets in such longer-term treatment. Although there are no efficacy data that specifically address longer-term antimanic treatment with divalproex sodium delayed-release tablets, the safety of divalproex sodium delayed-release tablets in long-term use is supported by data from record reviews involving approximately 360 patients treated with divalproex sodium delayed-release tablets for greater than 3 months. 2.2 Epilepsy Divalproex sodium delayed-release tablets are administered orally. Divalproex sodium delayed-release tablets are indicated as monotherapy and adjunctive therapy in complex partial seizures in adults and pediatric patients down to the age of 10 years, and in simple and complex absence seizures. As the divalproex sodium delayed-release tablets dosage is titrated upward, concentrations of clonazepam, diazepam, ethosuximide, lamotrigine, tolbutamide, phenobarbital, carbamazepine, and/or phenytoin may be affected [see Drug Interactions (7.2) ]. Complex Partial Seizures For adults and children 10 years of age or older. Monotherapy (Initial Therapy) Divalproex sodium has not been systematically studied as initial therapy. Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. The probability of thrombocytopenia increases significantly at total trough valproate plasma concentrations above 110 mcg/mL in females and 135 mcg/mL in males. The benefit of improved seizure control with higher doses should be weighed against the possibility of a greater incidence of adverse reactions. Conversion to Monotherapy Patients should initiate therapy at 10 to 15 mg/kg/day. The dosage should be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. Concomitant antiepilepsy drug (AED) dosage can ordinarily be reduced by approximately 25% every 2 weeks. This reduction may be started at initiation of divalproex sodium delayed-release tablets therapy, or delayed by 1 to 2 weeks if there is a concern that seizures are likely to occur with a reduction. The speed and duration of withdrawal of the concomitant AED can be highly variable, and patients should be monitored closely during this period for increased seizure frequency. Adjunctive Therapy Divalproex sodium may be added to the patient's regimen at a dosage of 10 to 15 mg/kg/day. The dosage may be increased by 5 to 10 mg/kg/week to achieve optimal clinical response. Ordinarily, optimal clinical response is achieved at daily doses below 60 mg/kg/day. If satisfactory clinical response has not been achieved, plasma levels should be measured to determine whether or not they are in the usually accepted therapeutic range (50 to 100 mcg/mL). No recommendation regarding the safety of valproate for use at doses above 60 mg/kg/day can be made. If the total daily dose exceeds 250 mg, it should be given in divided doses. In a study of adjunctive therapy for complex partial seizures in which patients were receiving either carbamazepine or phenytoin in addition to valproate, no adjustment of carbamazepine or phenytoin dosage was needed [see Clinical Studies (14.2) ]. However, since valproate may interact with these or other concurrently administered AEDs as well as other drugs, periodic plasma concentration determinations of concomitant AEDs are recommended during the early course of therapy [see Drug Interactions (7) ]. Simple and Complex Absence Seizures The recommended initial dose is 15 mg/kg/day, increasing at one week intervals by 5 to 10 mg/kg/day until seizures are controlled or side effects preclude further increases. The maximum recommended dosage is 60 mg/kg/day. If the total daily dose exceeds 250 mg, it should be given in divided doses. A good correlation has not been established between daily dose, serum concentrations, and therapeutic effect. However, therapeutic valproate serum concentrations for most patients with absence seizures is considered to range from 50 to 100 mcg/mL. Some patients may be controlled with lower or higher serum concentrations [see Clinical Pharmacology (12.3) ]. Antiepilepsy drugs should not be abruptly discontinued in patients in whom the drug is administered to prevent major seizures because of the strong possibility of precipitating status epilepticus with attendant hypoxia and threat to life. In epileptic patients previously receiving valproic acid therapy, divalproex sodium delayed-release tablets should be initiated at the same daily dose and dosing schedule. After the patient is stabilized on divalproex sodium delayed-release tablets, a dosing schedule of two or three times a day may be elected in selected patients. 2.3 Migraine Divalproex sodium delayed-release tablets are indicated for prophylaxis of migraine headaches in adults. Divalproex sodium delayed-release tablets are administered orally. The recommended starting dose is 250 mg twice daily. Some patients may benefit from doses up to 1,000 mg/day. In the clinical trials, there was no evidence that higher doses led to greater efficacy. 2.4 General Dosing Advice Dosing in Elderly Patients Due to a decrease in unbound clearance of valproate and possibly a greater sensitivity to somnolence in the elderly, the starting dose should be reduced in these patients. Dosage should be increased more slowly and with regular monitoring for fluid and nutritional intake, dehydration, somnolence, and other adverse reactions. Dose reductions or discontinuation of valproate should be considered in patients with decreased food or fluid intake and in patients with excessive somnolence. The ultimate therapeutic dose should be achieved on the basis of both tolerability and clinical response [see Warnings and Precautions (5.13) ]. Dose-Related Adverse Reactions The frequency of adverse effects (particularly elevated liver enzymes and thrombocytopenia) may be dose-related. The probability of thrombocytopenia appears to increase significantly at total valproate concentrations of ≥ 110 mcg/mL (females) or ≥ 135 mcg/mL (males) [see Warnings and Precautions (5.7) ]. The benefit of improved therapeutic effect with higher doses should be weighed against the possibility of a greater incidence of adverse reactions. G.I. Irritation Patients who experience G.I. irritation may benefit from administration of the drug with food or by slowly building up the dose from an initial low level.
Dosage forms and strengths
Information about all available dosage forms and strengths for the drug product to which the labeling applies. This field may contain descriptions of product appearance.3 DOSAGE FORMS AND STRENGTHS Divalproex sodium delayed-release tablets USP, 125 mg are light brown to brown colored, modified capsule shaped, biconvex coated tablets printed “R529” on one side with black ink and plain on other side. Divalproex sodium delayed-release tablets USP, 250 mg are cream colored, modified capsule shaped, biconvex coated tablets printed “R530” on one side with black ink and plain on other side. Divalproex sodium delayed-release tablets USP, 500 mg are light pink colored, modified capsule shaped, biconvex coated tablets printed “R531” on one side with black ink and plain on other side. Tablets: 125 mg, 250 mg and 500 mg (3)
Indications and usage
A statement of each of the drug products indications for use, such as for the treatment, prevention, mitigation, cure, or diagnosis of a disease or condition, or of a manifestation of a recognized disease or condition, or for the relief of symptoms associated with a recognized disease or condition. This field may also describe any relevant limitations of use.1 INDICATIONS AND USAGE Divalproex sodium delayed-release tablet is an anti-epileptic drug indicated for: Treatment of manic episodes associated with bipolar disorder (1.1) Monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures; adjunctive therapy in patients with multiple seizure types that include absence seizures (1.2) Prophylaxis of migraine headaches (1.3) 1.1 Mania Divalproex sodium delayed-release tablet is a valproate and is indicated for the treatment of the manic episodes associated with bipolar disorder. A manic episode is a distinct period of abnormally and persistently elevated, expansive, or irritable mood. Typical symptoms of mania include pressure of speech, motor hyperactivity, reduced need for sleep, flight of ideas, grandiosity, poor judgment, aggressiveness, and possible hostility. The efficacy of divalproex sodium delayed-release tablets was established in 3-week trials with patients meeting DSM-III-R criteria for bipolar disorder who were hospitalized for acute mania [see Clinical Studies (14.1) ]. The safety and effectiveness of divalproex sodium delayed-release tablets for long-term use in mania, i.e., more than 3 weeks, has not been systematically evaluated in controlled clinical trials. Therefore, healthcare providers who elect to use divalproex sodium delayed-release tablets for extended periods should continually reevaluate the long-term usefulness of the drug for the individual patient. 1.2 Epilepsy Divalproex sodium delayed-release tablets are indicated as monotherapy and adjunctive therapy in the treatment of patients with complex partial seizures that occur either in isolation or in association with other types of seizures. Divalproex sodium delayed-release tablets are also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures. Simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. Complex absence is the term used when other signs are also present. 1.3 Migraine Divalproex sodium delayed-release tablets are indicated for prophylaxis of migraine headaches. There is no evidence that divalproex sodium delayed-release tablets are useful in the acute treatment of migraine headaches. Because it may be a hazard to the fetus, divalproex sodium delayed-release tablets should be considered for women of childbearing potential only after this risk has been thoroughly discussed with the patient and weighed against the potential benefits of treatment [see Warnings and Precautions (5.2) and Patient Counseling Information (17.3) ].
Spl product data elements
Usually a list of ingredients in a drug product.divalproex sodium divalproex sodium divalproex sodium valproic acid acetone diacetylated monoglycerides hypromelloses isopropyl alcohol methylene chloride cellulose, microcrystalline povidone starch, corn silicon dioxide talc titanium dioxide vanillin shellac Ferrosoferric Oxide brown iron oxide butyl alcohol lecithin, soybean light brown to brown modified calpsule R529 divalproex sodium divalproex sodium divalproex sodium valproic acid acetone diacetylated monoglycerides hypromelloses isopropyl alcohol methylene chloride cellulose, microcrystalline povidone starch, corn silicon dioxide talc titanium dioxide vanillin shellac Ferrosoferric Oxide ferric oxide yellow butyl alcohol lecithin, soybean modified calpsule cream yellow to yellow R530 divalproex sodium divalproex sodium divalproex sodium valproic acid acetone diacetylated monoglycerides hypromelloses isopropyl alcohol methylene chloride cellulose, microcrystalline povidone starch, corn silicon dioxide talc titanium dioxide vanillin shellac Ferrosoferric Oxide ferric oxide red butyl alcohol lecithin, soybean modified calpsule light pink R531 structure figure1 figure2 figure3 figure4 Container1 Carton1 Container2 Carton2 Container3 Carton3
Carcinogenesis and mutagenesis and impairment of fertility
Information about carcinogenic, mutagenic, or fertility impairment potential revealed by studies in animals. Information from human data about such potential is part of the warnings field.13.1 Carcinogenesis, Mutagenesis, Impairment Of Fertility Carcinogenesis Valproate was administered orally to rats and mice at doses of 80 and 170 mg/kg/day (less than the maximum recommended human dose on a mg/m 2 basis) for two years. The primary findings were an increase in the incidence of subcutaneous fibrosarcomas in high-dose male rats receiving valproate and a dose-related trend for benign pulmonary adenomas in male mice receiving valproate. The significance of these findings for humans is unknown. Mutagenesis Valproate was not mutagenic in an in vitro bacterial assay (Ames test), did not produce dominant lethal effects in mice, and did not increase chromosome aberration frequency in an in vivo cytogenetic study in rats. Increased frequencies of sister chromatid exchange (SCE) have been reported in a study of epileptic children taking valproate, but this association was not observed in another study conducted in adults. There is some evidence that increased SCE frequencies may be associated with epilepsy. The biological significance of an increase in SCE frequency is not known. Fertility Chronic toxicity studies of valproate in juvenile and adult rats and dogs demonstrated reduced spermatogenesis and testicular atrophy at oral doses of 400 mg/kg/day or greater in rats (approximately equivalent to or greater than the maximum recommended human dose (MRHD) on a mg/m 2 basis) and 150 mg/kg/day or greater in dogs (approximately 1.4 times the MRHD or greater on a mg/m 2 basis). Fertility studies in rats have shown no effect on fertility at oral doses of valproate up to 350 mg/kg/day (approximately equal to the MRHD on a mg/m 2 basis) for 60 days. The effect of valproate on testicular development and on sperm production and fertility in humans is unknown.
Nonclinical toxicology
Information about toxicology in non-human subjects.13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment Of Fertility Carcinogenesis Valproate was administered orally to rats and mice at doses of 80 and 170 mg/kg/day (less than the maximum recommended human dose on a mg/m 2 basis) for two years. The primary findings were an increase in the incidence of subcutaneous fibrosarcomas in high-dose male rats receiving valproate and a dose-related trend for benign pulmonary adenomas in male mice receiving valproate. The significance of these findings for humans is unknown. Mutagenesis Valproate was not mutagenic in an in vitro bacterial assay (Ames test), did not produce dominant lethal effects in mice, and did not increase chromosome aberration frequency in an in vivo cytogenetic study in rats. Increased frequencies of sister chromatid exchange (SCE) have been reported in a study of epileptic children taking valproate, but this association was not observed in another study conducted in adults. There is some evidence that increased SCE frequencies may be associated with epilepsy. The biological significance of an increase in SCE frequency is not known. Fertility Chronic toxicity studies of valproate in juvenile and adult rats and dogs demonstrated reduced spermatogenesis and testicular atrophy at oral doses of 400 mg/kg/day or greater in rats (approximately equivalent to or greater than the maximum recommended human dose (MRHD) on a mg/m 2 basis) and 150 mg/kg/day or greater in dogs (approximately 1.4 times the MRHD or greater on a mg/m 2 basis). Fertility studies in rats have shown no effect on fertility at oral doses of valproate up to 350 mg/kg/day (approximately equal to the MRHD on a mg/m 2 basis) for 60 days. The effect of valproate on testicular development and on sperm production and fertility in humans is unknown.
Package label principal display panel
The content of the principal display panel of the product package, usually including the product’s name, dosage forms, and other key information about the drug product.PACKAGE LABEL.PRINCIPAL DISPLAY PANEL SECTION Divalproex Sodium Delayed-Release Tablets USP, 125 mg - Container Label
Divalproex Sodium Delayed-Release Tablets USP, 125 mg - Carton Label
Divalproex Sodium Delayed-Release Tablets USP, 250 mg - Container Label
Divalproex Sodium Delayed-Release Tablets USP, 250 mg - Carton Label
Divalproex Sodium Delayed-Release Tablets USP, 500 mg - Container Label
Divalproex Sodium Delayed-Release Tablets USP, 500 mg - Carton Label
Recent major changes
A list of the section(s) that contain substantive changes that have been approved by FDA in the product labeling. The headings and subheadings, if appropriate, affected by the change are listed together with each section’s identifying number and the month and year on which the change was incorporated in the labeling.Warnings and Precautions, Use in Women of Childbearing Potential (5.2) 10/2011 Warnings and Precautions, Birth Defects (5.3) 10/2011
divalproex sodium: Information for patients
Information necessary for patients to use the drug safely and effectively, such as precautions concerning driving or the concomitant use of other substances that may have harmful additive effects.17 PATIENT COUNSELING INFORMATION See FDA-Approved Medication Guide. 17.1 Hepatotoxicity Patients and guardians should be warned that nausea, vomiting, abdominal pain, anorexia, diarrhea, asthenia, and/or jaundice can be symptoms of hepatotoxicity and, therefore, require further medical evaluation promptly [see Warnings and Precautions (5.1) ]. 17.2 Pancreatitis Patients and guardians should be warned that abdominal pain, nausea, vomiting, and/or anorexia can be symptoms of pancreatitis and, therefore, require further medical evaluation promptly [see Warnings and Precautions (5.4) ]. 17.3 Birth Defects and Neurobehavioral Development Adverse Effects Prescribers should inform pregnant women and women of childbearing potential that use of divalproex sodium during pregnancy increases the risk of birth defects and adverse effects on neurobehavioral development. Prescribers should advise women to use effective contraception while using valproate. When appropriate, prescribers should counsel these patients about alternative therapeutic options. This is particularly important when valproate use is considered for a condition not usually associated with permanent injury or death (e.g. migraine). Patients should read the Medication Guide, which appears as the last section of the labeling [see Warnings and Precautions (5.3) and Use in Specific Populations (8.1) ]. Patients should be encouraged to enroll in the NAAED Pregnancy Registry if they become pregnant. This registry is collecting information about the safety of antiepileptic drugs during pregnancy. To enroll, patients can call the toll free number 1-888-233-2334 [see Use in Specific Populations (8.1) ]. 17.4 Suicidal Thinking and Behavior Patients, their caregivers, and families should be counseled that AEDs, including divalproex sodium, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to the healthcare providers [see Warnings and Precautions (5.6) ]. 17.5 Hyperammonemia Patients should be informed of the signs and symptoms associated with hyperammonemic encephalopathy and be told to inform the prescriber if any of these symptoms occur [see Warnings and Precautions ( 5.8 , 5.9 ) ]. 17.6 CNS depression Since valproate products may produce CNS depression, especially when combined with another CNS depressant (e.g., alcohol), patients should be advised not to engage in hazardous activities, such as driving an automobile or operating dangerous machinery, until it is known that they do not become drowsy from the drug. 17.7 Multi-organ Hypersensitivity Reaction Patients should be instructed that a fever associated with other organ system involvement (rash, lymphadenopathy, etc.) may be drug-related and should be reported to the physician immediately [see Warnings and Precautions (5.11) ].
Spl medguide
Information about the patient medication guide that accompanies the drug product. Certain drugs must be dispensed with an accompanying medication guide. This field may contain information about when to consult the medication guide and the contents of the medication guide.MEDICATION GUIDE Divalproex Sodium Delayed-Release Tablets USP Read this Medication Guide before you start taking a divalproex sodium delayed-release tablet and each time you get a refill. There may be new information. This information does not take the place of talking to your healthcare provider about your medical condition or treatment. What is the most important information I should know about divalproex sodium delayed-release tablets? Do not stop divalproex sodium delayed-release tablets without first talking to your healthcare provider. Stopping divalproex sodium delayed-release tablets suddenly can cause serious problems. Divalproex sodium delayed-release tablets can cause serious side effects, including: 1. Serious liver damage that can cause death, especially in children younger than 2 years old. The risk of getting this serious liver damage is more likely to happen within the first 6 months of treatment. Call your healthcare provider right away if you get any of the following symptoms: nausea or vomiting that does not go away loss of appetite pain on the right side of your stomach (abdomen) dark urine swelling of your face yellowing of your skin or the whites of your eyes In some cases, liver damage may continue despite stopping the drug. 2. Divalproex sodium delayed-release tablets may harm your unborn baby. If you take divalproex sodium delayed-release tablets during pregnancy for any medical condition, your baby is at risk for serious birth defects. The most common birth defects with divalproex sodium delayed-release tablets affect the brain and spinal cord and are called spina bifida or neural tube defects. These defects occur in 1 to 2 out of every 100 babies born to mothers who use this medicine during pregnancy. These defects can begin in the first month, even before you know you are pregnant. Other birth defects can happen. Birth defects may occur even in children born to women who are not taking any medicines and do not have other risk factors. Taking folic acid supplements before getting pregnant and during early pregnancy can lower the chance of having a baby with a neural tube defect. If you take divalproex sodium delayed-release tablets during pregnancy for any medical condition, your child is at risk for having a lower IQ. There may be other medicines to treat your condition that have a lower chance of birth defects. All women of childbearing age should talk to their healthcare provider about using other possible treatments instead of divalproex sodium delayed-release tablets. If the decision is made to use divalproex sodium delayed-release tablets, you should use effective birth control (contraception) unless you are planning to become pregnant. Tell your healthcare provider right away if you become pregnant while taking divalproex sodium delayed-release tablets. You and your healthcare provider should decide if you will continue to take divalproex sodium delayed-release tablets while you are pregnant. Pregnancy Registry: If you become pregnant while taking divalproex sodium delayed-release tablets, talk to your healthcare provider about registering with the North American Antiepileptic Drug Pregnancy Registry. You can enroll in this registry by calling 1-888-233-2334. The purpose of this registry is to collect information about the safety of antiepileptic drugs during pregnancy. 3. Inflammation of your pancreas that can cause death. Call your healthcare provider right away if you have any of these symptoms: severe stomach pain that you may also feel in your back nausea or vomiting that does not go away 4. Like other antiepileptic drugs, divalproex sodium delayed-release tablets may cause suicidal thoughts or actions in a very small number of people, about 1 in 500. Call a healthcare provider right away if you have any of these symptoms, especially if they are new, worse, or worry you: thoughts about suicide or dying attempts to commit suicide new or worse depression new or worse anxiety feeling agitated or restless panic attacks trouble sleeping (insomnia) new or worse irritability acting aggressive, being angry, or violent acting on dangerous impulses an extreme increase in activity and talking (mania) o other unusual changes in behavior or mood How can I watch for early symptoms of suicidal thoughts and actions? Pay attention to any changes, especially sudden changes in mood, behaviors, thoughts, or feelings. Keep all follow-up visits with your healthcare provider as scheduled. Call your healthcare provider between visits as needed, especially if you are worried about symptoms. Do not stop divalproex sodium delayed-release tablets without first talking to a healthcare provider. Stopping divalproex sodium delayed-release tablets suddenly can cause serious problems. Stopping a seizure medicine suddenly in a patient who has epilepsy can cause seizures that will not stop (status epilepticus). Suicidal thoughts or actions can be caused by things other than medicines. If you have suicidal thoughts or actions, your healthcare provider may check for other causes. What are divalproex sodium delayed-release tablets? Divalproex sodium delayed-release tablets are prescription medicines used: to treat manic episodes associated with bipolar disorder alone or with other medicines to treat: complex partial seizures in adults and children 10 years of age and older simple and complex absence seizures, with or without other seizure types to prevent migraine headaches Who should not take divalproex sodium delayed-release tablets? Do not take divalproex sodium delayed-release tablets if you: have liver problems are allergic to divalproex sodium , valproic acid, sodium valproate, or any of the ingredients in divalproex sodium delayed-release tablets. See the end of this leaflet for a complete list of ingredients in divalproex sodium delayed-release tablets. have a genetic problem call a urea cycle disorder What should I tell my healthcare provider before taking divalproex sodium delayed-release tablets? Before you take divalproex sodium delayed-release tablets, tell your healthcare provider if you: drink alcohol are pregnant or breastfeeding. Divalproex sodium delayed-release tablets can pass into breast milk. Talk to your healthcare provider about the best way to feed your baby if you take divalproex sodium delayed-release tablets. have or have had depression, mood problems, or suicidal thoughts or behavior have any other medical conditions Tell your healthcare provider about all the medicines you take, including prescription and nonprescription medicines, vitamins, herbal supplements and medicines that you take for a short period of time. Taking divalproex sodium delayed-release tablets with certain other medicines can cause side effects or affect how well they work. Do not start or stop other medicines without talking to your healthcare provider. Know the medicines you take. Keep a list of them and show it your healthcare provider and pharmacist each time you get a new medicine. How should I take divalproex sodium delayed-release tablets? Take divalproex sodium delayed-release tablets exactly as your healthcare provider tells you. Your healthcare provider will tell you how much divalproex sodium delayed-release tablets to take and when to take it. Your healthcare provider may change your dose. Do not change your dose of divalproex sodium delayed-release tablets without talking to your healthcare provider. Do not stop taking divalproex sodium delayed-release tablets without first talking to your healthcare provider. Stopping divalproex sodium delayed-release tablets suddenly can cause serious problems. Swallow divalproex sodium delayed-release tablets whole. Do not crush or chew divalproex sodium delayed-release tablets, Tell your healthcare provider if you can not swallow divalproex sodium delayed-release tablets whole. You may need a different medicine. If you take too much divalproex sodium delayed-release tablets, call your healthcare provider or local Poison Control Center right away. What should I avoid while taking divalproex sodium delayed-release tablets? Divalproex sodium delayed-release tablets can cause drowsiness and dizziness. Do not drink alcohol or take other medicines that make you sleepy or dizzy while taking divalproex sodium delayed-release tablets, until you talk with your doctor. Taking divalproex sodium delayed-release tablets with alcohol or drugs that cause sleepiness or dizziness may make your sleepiness or dizziness worse. Do not drive a car or operate dangerous machinery until you know how divalproex sodium delayed-release tablets affects you. Divalproex sodium delayed-release tablets can slow your thinking and motor skills. What are the possible side effects with divalproex sodium delayed-release tablets? See “ What is the most important information I should know about divalproex sodium delayed-release tablets? ” Divalproex sodium delayed-release tablets may cause other serious side effects including: Low blood count: red or purple spots on your skin, bruising, bleeding from your mouth, teeth or nose. High ammonia levels in your blood: feeling tired, vomiting, changes in mental status. Low body temperature (hypothermia): drop in your body temperature to less than 95°F, feeling tired, confusion, coma. Allergic (hypersensitivity) reactions: fever, skin rash, hives, sores in your mouth, blistering and peeling of your skin, swelling of your lymph nodes, swelling of your face, eyes, lips, tongue, or throat, trouble swallowing or breathing. Drowsiness or sleepiness in the elderly. This extreme drowsiness may cause you to eat or drink less than you normally would. Tell your doctor if you are not able to eat or drink as you normally do. Your doctor may start you at a lower dose of divalproex sodium delayed-release tablets. Call your healthcare provider right away, if you have any of the symptoms listed above. The common side effects of divalproex sodium delayed-release tablets include: nausea headache sleepiness vomiting weakness tremor dizziness stomach pain blurry vision double vision diarrhea increased appetite weight gain hair loss loss of appetite problems with walking or coordination These are not all of the possible side effects of divalproex sodium delayed-release tablets. For more information, ask your healthcare provider or pharmacist. Tell your healthcare provider if you have any side effect that bothers you or that does not go away. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800FDA-1088. How should I store divalproex sodium delayed-release tablets? Store divalproex sodium delayed release tablets at 20°-25°C (68°-77°F). Keep divalproex sodium delayed release tablets and all medicines out of the reach of children. General information about the safe and effective use of divalproex sodium delayed-release tablets Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use divalproex sodium delayed-release tablets for a condition for which it was not prescribed. Do not give divalproex sodium delayed-release tablets to other people, even if they have the same symptoms that you have. It may harm them. This Medication Guide summarizes the most important information about divalproex sodium delayed-release tablets. If you would like more information, talk with your healthcare provider. You can ask your pharmacist or healthcare provider for information about divalproex sodium delayed-release tablets that is written for health professionals. For more information, call 1-888-375-3784. What are the ingredients in divalproex sodium delayed-release tablets? Active ingredient: divalproex sodium Inactive ingredients: • Divalproex sodium delayed-release tablets: Divalproex sodium delayed-release tablets USP, contain the following inactive ingredients: Acetone, diacetylated monoglycerides, hypromellose, hypromellose phthalate, isopropyl alcohol, methylene chloride, microcrystalline cellulose, povidone, pregelatinized starch, silicon dioxide, talc, titanium dioxide ,vanillin and opacode black as printing ink. Opacode black contains shellac glaze, iron oxide black,n-butyl alcohol, industrial methylated spirit lecithin, antifoam DC 1510. In addition, individual tablets contain: 125 mg tablets: Ferric oxide (Iron oxide brown). 250 mg tablets: Ferric oxide (Iron oxide yellow). 500 mg tablets: Ferric oxide (Iron oxide red). This Medication Guide has been approved by the U.S. Food and Drug Administration. To reorder additional Medication Guides, contact Dr. Reddy’s Customer Service at 1-866-733-3952. R X Only Manufactured by: Dr. Reddy’s Laboratories Limited Bachupally – 500 090 INDIA Revised: 0612
Clinical studies
This field may contain references to clinical studies in place of detailed discussion in other sections of the labeling.14 CLINICAL STUDIES 14.1 Mania The effectiveness of divalproex sodium for the treatment of acute mania was demonstrated in two 3-week, placebo controlled, parallel group studies. (1) Study 1: The first study enrolled adult patients who met DSM-III-R criteria for bipolar disorder and who were hospitalized for acute mania. In addition, they had a history of failing to respond to or not tolerating previous lithium carbonate treatment. Divalproex sodium was initiated at a dose of 250 mg tid and adjusted to achieve serum valproate concentrations in a range of 50 to 100 mcg/mL by day 7. Mean divalproex sodium doses for completers in this study were 1,118, 1,525, and 2,402 mg/day at Days 7, 14, and 21, respectively. Patients were assessed on the Young Mania Rating Scale (YMRS; score ranges from 0 to 60), an augmented Brief Psychiatric Rating Scale (BPRS-A), and the Global Assessment Scale (GAS). Baseline scores and change from baseline in the Week 3 endpoint (last-observation-carry-forward) analysis were as follows: Table 6. Study 1 YMRS Total Score Group Baseline 1 BL to Wk 3 2 Difference 3 Placebo 28.8 + 0.2 Divalproex sodium 28.5 - 9.5 9.7 BPRS-A Total Score Group Baseline 1 BL to Wk 3 2 Difference 3 Placebo 76.2 + 1.8 Divalproex sodium 76.4 -17 18.8 GAS Score Group Baseline 1 BL to Wk 3 2 Difference 3 Placebo 31.8 0 Divalproex sodium 30.3 + 18.1 18.1 1. Mean score at baseline 2. Change from baseline to Week 3 (LOCF) 3. Difference in change from baseline to Week 3 endpoint (LOCF) between divalproex sodium and placebo Divalproex sodium was statistically significantly superior to placebo on all three measures of outcome. (2) Study 2: The second study enrolled adult patients who met Research Diagnostic Criteria for manic disorder and who were hospitalized for acute mania. Divalproex sodium was initiated at a dose of 250 mg tid and adjusted within a dose range of 750 to 2,500 mg/day to achieve serum valproate concentrations in a range of 40 to 150 mcg/mL. Mean divalproex sodium doses for completers in this study were 1,116, 1,683, and 2,006 mg/day at Days 7, 14, and 21, respectively. Study 2 also included a lithium group for which lithium doses for completers were 1,312, 1,869, and 1,984 mg/day at Days 7, 14, and 21, respectively. Patients were assessed on the Manic Rating Scale (MRS; score ranges from 11 to 63), and the primary outcome measures were the total MRS score, and scores for two subscales of the MRS, i.e., the Manic Syndrome Scale (MSS) and the Behavior and Ideation Scale (BIS). Baseline scores and change from baseline in the Week 3 endpoint (last-observation-carry-forward) analysis were as follows: Table 7. Study 2 MRS Total Score Group Baseline 1 BL to Day 21 2 Difference 3 Placebo 38.9 - 4.4 Lithium 37.9 -10.5 6.1 Divalproex sodium 38.1 - 9.5 5.1 MSS Total Score Group Baseline 1 BL to Day 21 2 Difference 3 Placebo 18.9 - 2.5 Lithium 18.5 - 6.2 3.7 Divalproex sodium 18.9 - 6 3.5 BIS Total Score Group Baseline 1 BL to Day 21 2 Difference 3 Placebo 16.4 - 1.4 Lithium 16 - 3.8 2.4 Divalproex sodium 15.7 - 3.2 1.8 1. Mean score at baseline 2. Change from baseline to Day 21 (LOCF) 3. Difference in change from baseline to Day 21 endpoint (LOCF) between divalproex sodium and placebo and lithium and placebo Divalproex sodium was statistically significantly superior to placebo on all three measures of outcome. An exploratory analysis for age and gender effects on outcome did not suggest any differential responsiveness on the basis of age or gender. A comparison of the percentage of patients showing ≥ 30% reduction in the symptom score from baseline in each treatment group, separated by study, is shown in Figure 1. * p < 0.05 PBO = placebo, DVPX = Divalproex sodium 14.2 Epilepsy The efficacy of valproate in reducing the incidence of complex partial seizures (CPS) that occur in isolation or in association with other seizure types was established in two controlled trials. In one multi-clinic, placebo-controlled study employing an add-on design (adjunctive therapy), 144 patients who continued to suffer eight or more CPS per 8 weeks during an 8 week period of monotherapy with doses of either carbamazepine or phenytoin sufficient to assure plasma concentrations within the "therapeutic range" were randomized to receive, in addition to their original antiepilepsy drug (AED), either divalproex sodium or placebo. Randomized patients were to be followed for a total of 16 weeks. The following Table presents the findings. Table 8. Adjunctive Therapy Study Median Incidence of CPS per 8 Weeks Add-on Treatment Number of Patients Baseline Incidence Experimental Incidence Divalproex sodium 75 16 8.9* Placebo 69 14.5 11.5 * Reduction from baseline statistically significantly greater for valproate than placebo at p ≤ 0.05 level. Figure 2 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the adjunctive therapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for an effective treatment is shifted to the left of the curve for placebo. This Figure shows that the proportion of patients achieving any particular level of improvement was consistently higher for valproate than for placebo. For example, 45% of patients treated with valproate had a ≥ 50% reduction in complex partial seizure rate compared to 23% of patients treated with placebo. Figure 2. The second study assessed the capacity of valproate to reduce the incidence of CPS when administered as the sole AED. The study compared the incidence of CPS among patients randomized to either a high or low dose treatment arm. Patients qualified for entry into the randomized comparison phase of this study only if 1) they continued to experience 2 or more CPS per 4 weeks during an 8 to 12 week long period of monotherapy with adequate doses of an AED (i.e., phenytoin, carbamazepine, phenobarbital, or primidone) and 2) they made a successful transition over a two week interval to valproate. Patients entering the randomized phase were then brought to their assigned target dose, gradually tapered off their concomitant AED and followed for an interval as long as 22 weeks. Less than 50% of the patients randomized, however, completed the study. In patients converted to divalproex sodium monotherapy, the mean total valproate concentrations during monotherapy were 71 and 123 mcg/mL in the low dose and high dose groups, respectively. The following Table presents the findings for all patients randomized who had at least one post-randomization assessment. Table 9. Monotherapy Study Median Incidence of CPS per 8 Weeks Treatment Number of Patients Baseline Incidence Randomized Phase Incidence High dose divalproex sodium 131 13.2 10.7* Low dose divalproex sodium 134 14.2 13.8 * Reduction from baseline statistically significantly greater for high dose than low dose at p ≤ 0.05 level Figure 3 presents the proportion of patients (X axis) whose percentage reduction from baseline in complex partial seizure rates was at least as great as that indicated on the Y axis in the monotherapy study. A positive percent reduction indicates an improvement (i.e., a decrease in seizure frequency), while a negative percent reduction indicates worsening. Thus, in a display of this type, the curve for a more effective treatment is shifted to the left of the curve for a less effective treatment. This Figure shows that the proportion of patients achieving any particular level of reduction was consistently higher for high dose valproate than for low dose valproate. For example, when switching from carbamazepine, phenytoin, phenobarbital or primidone monotherapy to high dose valproate monotherapy, 63% of patients experienced no change or a reduction in complex partial seizure rates compared to 54% of patients receiving low dose valproate. Figure 3 14.3 Migraine The results of two multicenter, randomized, double-blind, placebo-controlled clinical trials established the effectiveness of divalproex sodium in the prophylactic treatment of migraine headache. Both studies employed essentially identical designs and recruited patients with a history of migraine with or without aura (of at least 6 months in duration) who were experiencing at least 2 migraine headaches a month during the 3 months prior to enrollment. Patients with cluster headaches were excluded. Women of childbearing potential were excluded entirely from one study, but were permitted in the other if they were deemed to be practicing an effective method of contraception. In each study following a 4-week single-blind placebo baseline period, patients were randomized, under double blind conditions, to divalproex sodium or placebo for a 12-week treatment phase, comprised of a 4-week dose titration period followed by an 8-week maintenance period. Treatment outcome was assessed on the basis of 4-week migraine headache rates during the treatment phase. In the first study, a total of 107 patients (24 M, 83 F), ranging in age from 26 to 73 were randomized 2:1, divalproex sodium to placebo. Ninety patients completed the 8-week maintenance period. Drug dose titration, using 250 mg tablets, was individualized at the investigator's discretion. Adjustments were guided by actual/sham trough total serum valproate levels in order to maintain the study blind. In patients on divalproex sodium doses ranged from 500 to 2,500 mg a day. Doses over 500 mg were given in three divided doses (TID). The mean dose during the treatment phase was 1,087 mg/day resulting in a mean trough total valproate level of 72.5 mcg/mL, with a range of 31 to 133 mcg/mL. The mean 4-week migraine headache rate during the treatment phase was 5.7 in the placebo group compared to 3.5 in the divalproex sodium group (see Figure 4). These rates were significantly different. In the second study, a total of 176 patients (19 males and 157 females), ranging in age from 17 to 76 years, were randomized equally to one of three divalproex sodium dose groups (500, 1,000, or 1,500 mg/day) or placebo. The treatments were given in two divided doses (BID). One hundred thirty-seven patients completed the 8-week maintenance period. Efficacy was to be determined by a comparison of the 4-week migraine headache rate in the combined 1,000/1,500 mg/day group and placebo group. The initial dose was 250 mg daily. The regimen was advanced by 250 mg every 4 days (8 days for 500 mg/day group), until the randomized dose was achieved. The mean trough total valproate levels during the treatment phase were 39.6, 62.5, and 72.5 mcg/mL in the divalproex sodium 500, 1,000, and 1,500 mg/day groups, respectively. The mean 4-week migraine headache rates during the treatment phase, adjusted for differences in baseline rates, were 4.5 in the placebo group, compared to 3.3, 3, and 3.3 in the divalproex sodium 500, 1,000, and 1,500 mg/day groups, respectively, based on intent-to-treat results (see Figure 4). Migraine headache rates in the combined divalproex sodium 1,000/1,500 mg group were significantly lower than in the placebo group. Figure 4. Mean 4-week Migraine Rates 1 Mean dose of divalproex sodium was 1,087 mg/day. 2 Dose of divalproex sodium was 500 or 1,000 mg/day.
| |||
| | | |
Placebo | 28.8 | + 0.2 | |
Divalproex sodium | 28.5 | - 9.5 | 9.7 |
| |||
| | | |
Placebo | 76.2 | + 1.8 | |
Divalproex sodium | 76.4 | -17 | 18.8 |
| |||
| | | |
Placebo | 31.8 | 0 | |
Divalproex sodium | 30.3 | + 18.1 | 18.1 |
| |||
| | | |
Placebo | 38.9 | - 4.4 | |
Lithium | 37.9 | -10.5 | 6.1 |
Divalproex sodium | 38.1 | - 9.5 | 5.1 |
| |||
| | | |
Placebo | 18.9 | - 2.5 | |
Lithium | 18.5 | - 6.2 | 3.7 |
Divalproex sodium | 18.9 | - 6 | 3.5 |
| |||
| | | |
Placebo | 16.4 | - 1.4 | |
Lithium | 16 | - 3.8 | 2.4 |
Divalproex sodium | 15.7 | - 3.2 | 1.8 |
| | | |
Divalproex sodium | 75 | 16 | 8.9* |
Placebo | 69 | 14.5 | 11.5 |
| | | Randomized Phase Incidence |
High dose divalproex sodium | 131 | 13.2 | 10.7* |
Low dose divalproex sodium | 134 | 14.2 | 13.8 |
Geriatric use
Information about any limitations on any geriatric indications, needs for specific monitoring, hazards associated with use of the drug in the geriatric population.8.5 Geriatric Use No patients above the age of 65 years were enrolled in double-blind prospective clinical trials of mania associated with bipolar illness. In a case review study of 583 patients, 72 patients (12%) were greater than 65 years of age. A higher percentage of patients above 65 years of age reported accidental injury, infection, pain, somnolence, and tremor. Discontinuation of valproate was occasionally associated with the latter two events. It is not clear whether these events indicate additional risk or whether they result from preexisting medical illness and concomitant medication use among these patients. A study of elderly patients with dementia revealed drug related somnolence and discontinuation for somnolence [see Warnings and Precautions (5.13) ]. The starting dose should be reduced in these patients, and dosage reductions or discontinuation should be considered in patients with excessive somnolence [see Dosage and Administration (2.4) ]. There is insufficient information available to discern the safety and effectiveness of valproate for the prophylaxis of migraines in patients over 65.
Nursing mothers
Information about excretion of the drug in human milk and effects on the nursing infant, including pertinent adverse effects observed in animal offspring.8.3 Nursing Mothers Valproate is excreted in human milk. Caution should be exercised when valproate is administered to a nursing woman.
Pediatric use
Information about any limitations on any pediatric indications, needs for specific monitoring, hazards associated with use of the drug in any subsets of the pediatric population (such as neonates, infants, children, or adolescents), differences between pediatric and adult responses to the drug, and other information related to the safe and effective pediatric use of the drug.8.4 Pediatric Use Experience has indicated that pediatric patients under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions [see Boxed Warning , Warning and Precautions (5.1) ]. When valproate is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. Above the age of 2 years, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups. Younger children, especially those receiving enzyme-inducing drugs, will require larger maintenance doses to attain targeted total and unbound valproate concentrations. Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. The variability in free fraction limits the clinical usefulness of monitoring total serum valproic acid concentrations. Interpretation of valproic acid concentrations in children should include consideration of factors that affect hepatic metabolism and protein binding. Pediatric Clinical Trials Divalproex sodium was studied in seven pediatric clinical trials. Two of the pediatric studies were double-blinded placebo-controlled trials to evaluate the efficacy of divalproex sodium extended-release for the indications of mania (150 patients aged 10 to 17 years, 76 of whom were on divalproex sodium extended-release) and migraine (304 patients aged 12 to 17 years, 231 of whom were on divalproex sodium extended-release). Efficacy was not established for either the treatment of migraine or the treatment of mania. The remaining five trials were long term safety studies. Two six-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium extended-release for the indication of mania (292 patients aged 10 to 17 years). Two twelve-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium extended-release for the indication of migraine (353 patients aged 12 to 17 years). One twelve-month study was conducted to evaluate the safety of divalproex sodium sprinkle capsules in the indication of partial seizures (169 patients aged 3 to 10 years). The safety and tolerability of divalproex sodium in pediatric patients were shown to be comparable to those in adults [see Adverse Reactions (6) ]. Nonclinical Developmental Toxicology In studies of valproate in immature animals, toxic effects not observed in adult animals included retinal dysplasia in rats treated during the neonatal period (from postnatal day 4) and nephrotoxicity in rats treated during the neonatal and juvenile (from postnatal day 14) periods. The no-effect dose for these findings was less than the maximum recommended human dose on a mg/m 2 basis.
Pregnancy
Information about effects the drug may have on pregnant women or on a fetus. This field may be ommitted if the drug is not absorbed systemically and the drug is not known to have a potential for indirect harm to the fetus. It may contain information about the established pregnancy category classification for the drug. (That information is nominally listed in the teratogenic_effects field, but may be listed here instead.)8.1 Pregnancy Pregnancy Category D: [see Warnings and Precautions (5.3) ]. Pregnancy Registry To collect information on the effects of in utero exposure to divalproex sodium, physicians should encourage pregnant patients taking divalproex sodium to enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling toll free 1-888-233-2334, and must be done by the patients themselves. Information on the registry can be found at the website, http://www.aedpregnancyregistry.org/ . Fetal Risk Summary All pregnancies have a background risk of birth defects (about 3%), pregnancy loss (about 15%), or other adverse outcomes regardless of drug exposure. Maternal valproate use during pregnancy for any indication increases the risk of congenital malformations, particularly neural tube defects, but also malformations involving other body systems (e.g., craniofacial defects, cardiovascular malformations). The risk of major structural abnormalities is greatest during the first trimester; however, other serious developmental effects can occur with valproate use throughout pregnancy. The rate of congenital malformations among babies born to epileptic mothers who used valproate during pregnancy has been shown to be about four times higher than the rate among babies born to epileptic mothers who used other anti-seizure monotherapies. Several published epidemiological studies have indicated that children exposed to valproate in utero have lower cognitive test scores than children exposed to either another antiepileptic drug in utero or to no antiepileptic drugs in utero [see Warnings and Precautions (5.3) ]. In animal studies, offspring had structural malformations similar to those seen in humans and demonstrated behavioral deficits. Clinical Considerations Neural tube defects are the congenital malformation most strongly associated with maternal valproate use. The risk of spina bifida following in utero valproate exposure is generally estimated as 1 to 2%, compared to an estimated general population risk for spina bifida of about 0.06 to 0.07% (6 to 7 in 10,000 births). To prevent major seizures, women with epilepsy should not discontinue divalproex sodium abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. Even minor seizures may pose some hazard to the developing embryo or fetus. However, discontinuation of the drug may be considered prior to and during pregnancy in individual cases if the seizure disorder severity and frequency do not pose a serious threat to the patient. Available prenatal diagnostic testing to detect neural tube and other defects should be offered to pregnant women using valproate. Evidence suggests that folic acid supplementation prior to conception and during the first trimester of pregnancy decreases the risk for congenital neural tube defects in the general population. It is not known whether the risk of neural tube defects in the offspring of women receiving valproate is reduced by folic acid supplementation. Dietary folic acid supplementation both prior to conception and during pregnancy should be routinely recommended for patients using valproate. Patients taking valproate may develop clotting abnormalities [see Warnings and Precautions (5.7) ]. A patient who had low fibrinogen when taking multiple anticonvulsants including valproate gave birth to an infant with afibrinogenemia who subsequently died of hemorrhage. If valproate is used in pregnancy, the clotting parameters should be monitored carefully. Patients taking valproate may develop hepatic failure [see Boxed Warning , Warnings and Precautions (5.1) ]. Fatal cases of hepatic failure in infants exposed to valproate in utero have also been reported following maternal use of valproate during pregnancy. Data Human There is an extensive body of evidence demonstrating that exposure to valproate in utero increases the risk of neural tube defects and other structural abnormalities. Based on published data from the CDC’s National Birth Defects Prevention Network, the risk of spina bifida in the general population is about 0.06 to 0.07%. The risk of spina bifida following in utero valproate exposure has been estimated to be approximately 1 to 2%. In one study using NAAED Pregnancy Registry data, 16 cases of major malformations following prenatal valproate exposure were reported among offspring of 149 enrolled women who used valproate during pregnancy. Three of the 16 cases were neural tube defects; the remaining cases included craniofacial defects, cardiovascular malformations and malformations of varying severity involving other body systems. The NAAED Pregnancy Registry has reported a major malformation rate of 10.7% (95% C.I. 6.3% - 16.9%) in the offspring of women exposed to an average of 1,000 mg/day of valproate monotherapy during pregnancy (dose range 500 to 2,000 mg/day). The major malformation rate among the internal comparison group of 1,048 epileptic women who received any other antiepileptic drug monotherapy during pregnancy was 2.9% (95% CI 2% to 4.1%). These data show a four-fold increased risk for any major malformation (Odds Ratio 4; 95% CI 2.1 to 7.4) following valproate exposure in utero compared to the risk following exposure in utero to any other antiepileptic drug monotherapy. Several published epidemiological studies have indicated that children exposed to valproate in utero have lower cognitive test scores than children exposed to either another antiepileptic drug in utero or to no antiepileptic drugs in utero. The largest of these studies is a prospective cohort study conducted in the United States and United Kingdom that found that children with prenatal exposure to valproate had lower Differential Ability Scale scores at age 3 (92 [95% C.I. 88-97]) than children with prenatal exposure to the other anti-epileptic drug monotherapy treatments evaluated: lamotrigine (101 [95% C.I. 98-104]), carbamazepine (98 [95% C.I. 95-102]) and phenytoin, 99 [95% C.I. 94-104)]. The D.A.S., which has a mean score of 100 (SD = 15), is a battery of cognitive tests designed for children ages 2.5 to 17 years. The D.A.S. is a measure of neurobehavioral development performed when children are too young to undergo IQ testing and generally correlates with IQ scores later in childhood. Although all of the available studies have methodological limitations, the weight of the evidence supports a causal association between valproate exposure in utero and subsequent adverse effects on cognitive development. There are published case reports of fatal hepatic failure in offspring of women who used valproate during pregnancy. Animal In developmental toxicity studies conducted in mice, rats, rabbits, and monkeys, increased rates of fetal structural abnormalities, intrauterine growth retardation, and embryo-fetal death occurred following treatment of pregnant animals with valproate during organogenesis at clinically relevant doses (calculated on a body surface area basis). Valproate induced malformations of multiple organ systems, including skeletal, cardiac, and urogenital defects. In mice, in addition to other malformations, fetal neural tube defects have been reported following valproate administration during critical periods of organogenesis, and the teratogenic response correlated with peak maternal drug levels. Behavioral abnormalities (including cognitive, locomotor, and social interaction deficits) and brain histopathological changes have also been reported in mice and rat offspring exposed prenatally to clinically relevant doses of valproate.
Use in specific populations
Information about use of the drug by patients in specific populations, including pregnant women and nursing mothers, pediatric patients, and geriatric patients.8 USE IN SPECIFIC POPULATIONS Pregnancy: divalproex sodium can cause congenital malformations including neural tube defects. Pregnancy registry available ( 5.2 , 8.1 ) Pediatric: Children under the age of two years are at considerably higher risk of fatal hepatotoxicity ( 5.1 , 8.4 ) Geriatric: reduce starting dose; increase dosage more slowly; monitor fluid and nutritional intake, and somnolence ( 5.13 , 8.5 ) 8.1 Pregnancy Pregnancy Category D: [see Warnings and Precautions (5.3) ]. Pregnancy Registry To collect information on the effects of in utero exposure to divalproex sodium, physicians should encourage pregnant patients taking divalproex sodium to enroll in the North American Antiepileptic Drug (NAAED) Pregnancy Registry. This can be done by calling toll free 1-888-233-2334, and must be done by the patients themselves. Information on the registry can be found at the website, http://www.aedpregnancyregistry.org/ . Fetal Risk Summary All pregnancies have a background risk of birth defects (about 3%), pregnancy loss (about 15%), or other adverse outcomes regardless of drug exposure. Maternal valproate use during pregnancy for any indication increases the risk of congenital malformations, particularly neural tube defects, but also malformations involving other body systems (e.g., craniofacial defects, cardiovascular malformations). The risk of major structural abnormalities is greatest during the first trimester; however, other serious developmental effects can occur with valproate use throughout pregnancy. The rate of congenital malformations among babies born to epileptic mothers who used valproate during pregnancy has been shown to be about four times higher than the rate among babies born to epileptic mothers who used other anti-seizure monotherapies. Several published epidemiological studies have indicated that children exposed to valproate in utero have lower cognitive test scores than children exposed to either another antiepileptic drug in utero or to no antiepileptic drugs in utero [see Warnings and Precautions (5.3) ]. In animal studies, offspring had structural malformations similar to those seen in humans and demonstrated behavioral deficits. Clinical Considerations Neural tube defects are the congenital malformation most strongly associated with maternal valproate use. The risk of spina bifida following in utero valproate exposure is generally estimated as 1 to 2%, compared to an estimated general population risk for spina bifida of about 0.06 to 0.07% (6 to 7 in 10,000 births). To prevent major seizures, women with epilepsy should not discontinue divalproex sodium abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. Even minor seizures may pose some hazard to the developing embryo or fetus. However, discontinuation of the drug may be considered prior to and during pregnancy in individual cases if the seizure disorder severity and frequency do not pose a serious threat to the patient. Available prenatal diagnostic testing to detect neural tube and other defects should be offered to pregnant women using valproate. Evidence suggests that folic acid supplementation prior to conception and during the first trimester of pregnancy decreases the risk for congenital neural tube defects in the general population. It is not known whether the risk of neural tube defects in the offspring of women receiving valproate is reduced by folic acid supplementation. Dietary folic acid supplementation both prior to conception and during pregnancy should be routinely recommended for patients using valproate. Patients taking valproate may develop clotting abnormalities [see Warnings and Precautions (5.7) ]. A patient who had low fibrinogen when taking multiple anticonvulsants including valproate gave birth to an infant with afibrinogenemia who subsequently died of hemorrhage. If valproate is used in pregnancy, the clotting parameters should be monitored carefully. Patients taking valproate may develop hepatic failure [see Boxed Warning , Warnings and Precautions (5.1) ]. Fatal cases of hepatic failure in infants exposed to valproate in utero have also been reported following maternal use of valproate during pregnancy. Data Human There is an extensive body of evidence demonstrating that exposure to valproate in utero increases the risk of neural tube defects and other structural abnormalities. Based on published data from the CDC’s National Birth Defects Prevention Network, the risk of spina bifida in the general population is about 0.06 to 0.07%. The risk of spina bifida following in utero valproate exposure has been estimated to be approximately 1 to 2%. In one study using NAAED Pregnancy Registry data, 16 cases of major malformations following prenatal valproate exposure were reported among offspring of 149 enrolled women who used valproate during pregnancy. Three of the 16 cases were neural tube defects; the remaining cases included craniofacial defects, cardiovascular malformations and malformations of varying severity involving other body systems. The NAAED Pregnancy Registry has reported a major malformation rate of 10.7% (95% C.I. 6.3% - 16.9%) in the offspring of women exposed to an average of 1,000 mg/day of valproate monotherapy during pregnancy (dose range 500 to 2,000 mg/day). The major malformation rate among the internal comparison group of 1,048 epileptic women who received any other antiepileptic drug monotherapy during pregnancy was 2.9% (95% CI 2% to 4.1%). These data show a four-fold increased risk for any major malformation (Odds Ratio 4; 95% CI 2.1 to 7.4) following valproate exposure in utero compared to the risk following exposure in utero to any other antiepileptic drug monotherapy. Several published epidemiological studies have indicated that children exposed to valproate in utero have lower cognitive test scores than children exposed to either another antiepileptic drug in utero or to no antiepileptic drugs in utero. The largest of these studies is a prospective cohort study conducted in the United States and United Kingdom that found that children with prenatal exposure to valproate had lower Differential Ability Scale scores at age 3 (92 [95% C.I. 88-97]) than children with prenatal exposure to the other anti-epileptic drug monotherapy treatments evaluated: lamotrigine (101 [95% C.I. 98-104]), carbamazepine (98 [95% C.I. 95-102]) and phenytoin, 99 [95% C.I. 94-104)]. The D.A.S., which has a mean score of 100 (SD = 15), is a battery of cognitive tests designed for children ages 2.5 to 17 years. The D.A.S. is a measure of neurobehavioral development performed when children are too young to undergo IQ testing and generally correlates with IQ scores later in childhood. Although all of the available studies have methodological limitations, the weight of the evidence supports a causal association between valproate exposure in utero and subsequent adverse effects on cognitive development. There are published case reports of fatal hepatic failure in offspring of women who used valproate during pregnancy. Animal In developmental toxicity studies conducted in mice, rats, rabbits, and monkeys, increased rates of fetal structural abnormalities, intrauterine growth retardation, and embryo-fetal death occurred following treatment of pregnant animals with valproate during organogenesis at clinically relevant doses (calculated on a body surface area basis). Valproate induced malformations of multiple organ systems, including skeletal, cardiac, and urogenital defects. In mice, in addition to other malformations, fetal neural tube defects have been reported following valproate administration during critical periods of organogenesis, and the teratogenic response correlated with peak maternal drug levels. Behavioral abnormalities (including cognitive, locomotor, and social interaction deficits) and brain histopathological changes have also been reported in mice and rat offspring exposed prenatally to clinically relevant doses of valproate. 8.3 Nursing Mothers Valproate is excreted in human milk. Caution should be exercised when valproate is administered to a nursing woman. 8.4 Pediatric Use Experience has indicated that pediatric patients under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions [see Boxed Warning , Warning and Precautions (5.1) ]. When valproate is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. Above the age of 2 years, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups. Younger children, especially those receiving enzyme-inducing drugs, will require larger maintenance doses to attain targeted total and unbound valproate concentrations. Pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., mL/min/kg) than do adults. Over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. The variability in free fraction limits the clinical usefulness of monitoring total serum valproic acid concentrations. Interpretation of valproic acid concentrations in children should include consideration of factors that affect hepatic metabolism and protein binding. Pediatric Clinical Trials Divalproex sodium was studied in seven pediatric clinical trials. Two of the pediatric studies were double-blinded placebo-controlled trials to evaluate the efficacy of divalproex sodium extended-release for the indications of mania (150 patients aged 10 to 17 years, 76 of whom were on divalproex sodium extended-release) and migraine (304 patients aged 12 to 17 years, 231 of whom were on divalproex sodium extended-release). Efficacy was not established for either the treatment of migraine or the treatment of mania. The remaining five trials were long term safety studies. Two six-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium extended-release for the indication of mania (292 patients aged 10 to 17 years). Two twelve-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium extended-release for the indication of migraine (353 patients aged 12 to 17 years). One twelve-month study was conducted to evaluate the safety of divalproex sodium sprinkle capsules in the indication of partial seizures (169 patients aged 3 to 10 years). The safety and tolerability of divalproex sodium in pediatric patients were shown to be comparable to those in adults [see Adverse Reactions (6) ]. Nonclinical Developmental Toxicology In studies of valproate in immature animals, toxic effects not observed in adult animals included retinal dysplasia in rats treated during the neonatal period (from postnatal day 4) and nephrotoxicity in rats treated during the neonatal and juvenile (from postnatal day 14) periods. The no-effect dose for these findings was less than the maximum recommended human dose on a mg/m 2 basis. 8.5 Geriatric Use No patients above the age of 65 years were enrolled in double-blind prospective clinical trials of mania associated with bipolar illness. In a case review study of 583 patients, 72 patients (12%) were greater than 65 years of age. A higher percentage of patients above 65 years of age reported accidental injury, infection, pain, somnolence, and tremor. Discontinuation of valproate was occasionally associated with the latter two events. It is not clear whether these events indicate additional risk or whether they result from preexisting medical illness and concomitant medication use among these patients. A study of elderly patients with dementia revealed drug related somnolence and discontinuation for somnolence [see Warnings and Precautions (5.13) ]. The starting dose should be reduced in these patients, and dosage reductions or discontinuation should be considered in patients with excessive somnolence [see Dosage and Administration (2.4) ]. There is insufficient information available to discern the safety and effectiveness of valproate for the prophylaxis of migraines in patients over 65.
How supplied
Information about the available dosage forms to which the labeling applies, and for which the manufacturer or distributor is responsible. This field ordinarily includes the strength of the dosage form (in metric units), the units in which the dosage form is available for prescribing, appropriate information to facilitate identification of the dosage forms (such as shape, color, coating, scoring, and National Drug Code), and special handling and storage condition information.16 HOW SUPPLIED/STORAGE AND HANDLING Divalproex sodium delayed-release tablets USP, 125 mg are light brown to brown colored, modified capsule shaped, biconvex coated tablets printed “R529” on one side with black ink and plain on other side. They are supplied in bottles of 30’s, 100’s, 500’s and unit dose package of 100 (10 x 10). Bottles of 30 NDC 55111-529-30 Bottles of 100 NDC 55111-529-01 Bottles of 500 NDC 55111-529-05 Unit dose package of 100 (10 x 10) NDC 55111-529-78 Divalproex sodium delayed-release tablets USP, 250 mg are cream colored, modified capsule shaped, biconvex coated tablets printed “R530” on one side with black ink and plain on other side. They are supplied in bottles of 30’s, 100’s, 500’s and unit dose package of 100 (10 x 10). Bottles of 30 NDC 55111-530-30 Bottles of 100 NDC 55111-530-01 Bottles of 500 NDC 55111-530-05 Unit dose package of 100 (10 x 10) NDC 55111-530-78 Divalproex sodium delayed-release tablets USP, 500 mg are light pink colored, modified capsule shaped, biconvex coated tablets printed “R531” on one side with black ink and plain on other side. They are supplied in bottles of 30’s, 100’s, 500’s and unit dose package of 100 (10 x 10). Bottles of 30 NDC 55111-531-30 Bottles of 100 NDC 55111-531-01 Bottles of 500 NDC 55111-531-05 Unit dose package of 100 (10 x 10) NDC 55111-531-78 Recommended storage: Store divalproex sodium delayed-release tablets at 20°-25°C (68°-77°F); [see USP Controlled Room Temperature].
Boxed warning
Information about contraindications or serious warnings, particularly those that may lead to death or serious injury.WARNING: LIFE THREATENING ADVERSE REACTIONS Hepatotoxicity Hepatic failure resulting in fatalities has occurred in patients receiving valproate and its derivatives. Children under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those on multiple anticonvulsants, those with congenital metabolic disorders, those with severe seizure disorders accompanied by mental retardation, and those with organic brain disease. When divalproex sodium is used in this patient group, it should be used with extreme caution and as a sole agent. The benefits of therapy should be weighed against the risks. The incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups. These incidents usually have occurred during the first six months of treatment. Serious or fatal hepatotoxicity may be preceded by non-specific symptoms such as malaise, weakness, lethargy, facial edema, anorexia, and vomiting. In patients with epilepsy, a loss of seizure control may also occur. Patients should be monitored closely for appearance of these symptoms. Liver function tests should be performed prior to therapy and at frequent intervals thereafter, especially during the first six months [see Warnings and Precautions (5.1) ]. Fetal Risk Valproate can cause major congenital malformations, particularly neural tube defects (e.g., spina bifida). Valproate should not be administered to a woman of childbearing potential unless the drug is essential to the management of her medical condition. This is especially important when valproate use is considered for a condition not usually associated with permanent injury or death (e.g., migraine). Women should use effective contraception while using valproate [see Warnings and Precautions ( 5.2 , 5.3 ) ]. A Medication Guide describing the risks of valproate is available for patients [see Patient Counseling Information (17) ]. Pancreatitis Cases of life-threatening pancreatitis have been reported in both children and adults receiving valproate. Some of the cases have been described as hemorrhagic with a rapid progression from initial symptoms to death. Cases have been reported shortly after initial use as well as after several years of use. Patients and guardians should be warned that abdominal pain, nausea, vomiting, and/or anorexia can be symptoms of pancreatitis that require prompt medical evaluation. If pancreatitis is diagnosed, valproate should ordinarily be discontinued. Alternative treatment for the underlying medical condition should be initiated as clinically indicated [see Warnings and Precautions (5.4) ]. WARNINGS: LIFE THREATENING ADVERSE REACTIONS See full prescribing information for complete boxed warning. Hepatotoxicity, including fatalities, usually during the first 6 months of treatment. Children under the age of two years are at a considerably higher risk of fatal hepatotoxicity. Monitor patients closely, and perform liver function tests prior to therapy and at frequent intervals thereafter (5.1) Fetal Risk, particularly neural tube defects and other major malformations ( 5.2 , 5.3 ) Pancreatitis, including fatal hemorrhagic cases (5.4)
Disclaimer: Do not rely on openFDA or Phanrmacy Near Me to make decisions regarding medical care. While we make every effort to ensure that data is accurate, you should assume all results are unvalidated. Source: OpenFDA, Healthporta Drugs API