Sign In

Save up to 80% by drug discount in your pharmacy with "Pharmacy Near Me - National Drug Discount Card"

You can scan QR Code(just open camera on your phone/scan by application) from the image on prescription drug discount card to save it to your mobile phone. Or just click on image if you're on mobile phone.

View Generic:
View Brand:

Amoxicillin - Medication Information

Product NDC Code 55289-020
Drug Name

Amoxicillin

Type Generic
Pharm Class Penicillin-class Antibacterial [EPC],
Penicillins [CS]
Active Ingredients
Amoxicillin 500 mg/1
Route ORAL
Dosage Form CAPSULE
RxCUI drug identifier 308191
Application Number ANDA061926
Labeler Name PD-Rx Pharmaceuticals, Inc.
Packages
Package NDC Code Description
55289-020-04 4 capsule in 1 bottle, plastic (55289-020-04)
55289-020-06 6 capsule in 1 bottle, plastic (55289-020-06)
55289-020-09 9 capsule in 1 bottle, plastic (55289-020-09)
55289-020-14 14 capsule in 1 bottle, plastic (55289-020-14)
55289-020-15 15 capsule in 1 bottle, plastic (55289-020-15)
55289-020-21 21 capsule in 1 bottle, plastic (55289-020-21)
55289-020-24 24 capsule in 1 bottle, plastic (55289-020-24)
55289-020-28 28 capsule in 1 bottle, plastic (55289-020-28)
55289-020-30 30 capsule in 1 bottle, plastic (55289-020-30)
55289-020-40 40 capsule in 1 bottle, plastic (55289-020-40)
55289-020-42 42 capsule in 1 bottle, plastic (55289-020-42)
55289-020-50 50 capsule in 1 bottle, plastic (55289-020-50)
55289-020-56 56 capsule in 1 bottle, plastic (55289-020-56)
55289-020-60 60 capsule in 1 bottle, plastic (55289-020-60)
55289-020-63 63 capsule in 1 bottle, plastic (55289-020-63)
Check if available Online

Overdosage of Amoxicillin

Information about signs, symptoms, and laboratory findings of acute ovedosage and the general principles of overdose treatment.
10 OVERDOSAGE In case of overdosage, discontinue amoxicillin, treat symptomatically, and institute supportive measures as required. A prospective study of 51 pediatric patients at a poison-control center suggested that overdosages of less than 250 mg/kg of amoxicillin are not associated with significant clinical symptoms. Interstitial nephritis resulting in oliguric renal failure has been reported in a small number of patients after overdosage with amoxicillin 1 . Crystalluria, in some cases leading to renal failure, has also been reported after amoxicillin overdosage in adult and pediatric patients. In case of overdosage, adequate fluid intake and diuresis should be maintained to reduce the risk of amoxicillin crystalluria. Renal impairment appears to be reversible with cessation of drug administration. High blood levels may occur more readily in patients with impaired renal function because of decreased renal clearance of amoxicillin. Amoxicillin may be removed from circulation by hemodialysis.

Adverse reactions

Information about undesirable effects, reasonably associated with use of the drug, that may occur as part of the pharmacological action of the drug or may be unpredictable in its occurrence. Adverse reactions include those that occur with the drug, and if applicable, with drugs in the same pharmacologically active and chemically related class. There is considerable variation in the listing of adverse reactions. They may be categorized by organ system, by severity of reaction, by frequency, by toxicological mechanism, or by a combination of these.
6 ADVERSE REACTIONS The following are discussed in more detail in other sections of the labeling: Anaphylactic reactions [see Warnings and Precautions ( 5.1 )] Severe Cutaneous Adverse Reactions [see Warnings and Precautions ( 5.2 )] Drug-Induced Enterocolitis Syndrome (DIES) [see Warnings and Precautions ( 5.3 )] Clostridioides difficile -Associated Diarrhea (CDAD) [see Warnings and Precautions ( 5.4 )] The most common adverse reactions (greater than 1%) observed in clinical trials of amoxicillin capsules, amoxicillin tablets or for oral suspension were diarrhea, rash, vomiting, and nausea. ( 6.1 ) To report SUSPECTED ADVERSE REACTIONS, contact Teva at 1-888-838-2872 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch . 6.1 Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. The most common adverse reactions (greater than 1%) observed in clinical trials of amoxicillin capsules, amoxicillin tablets or for oral suspension were diarrhea, rash, vomiting, and nausea. Triple therapy: The most frequently reported adverse events for patients who received triple therapy (amoxicillin/clarithromycin/ lansoprazole) were diarrhea (7%), headache (6%), and taste perversion (5%). Dual therapy: The most frequently reported adverse events for patients who received double therapy amoxicillin/lansoprazole were diarrhea (8%) and headache (7%). For more information on adverse reactions with clarithromycin or lansoprazole, refer to the Adverse Reactions section of their package inserts. 6.2 Postmarketing Experience In addition to adverse events reported from clinical trials, the following events have been identified during postmarketing use of penicillins. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. These events have been chosen for inclusion due to a combination of their seriousness, frequency of reporting, or potential causal connection to amoxicillin. Infections and Infestations: Mucocutaneous candidiasis. Gastrointestinal: Drug-induced enterocolitis syndrome (DIES), black hairy tongue, and hemorrhagic/pseudomembranous colitis. Onset of pseudomembranous colitis symptoms may occur during or after antibacterial treatment [see Warnings and Precautions ( 5.4 )] . Immune: Hypersensitivity reactions, anaphylactic/anaphylactoid reactions (including shock), angioedema, serum sickness-like reactions (urticaria or skin rash accompanied by arthritis, arthralgia, myalgia, and frequently fever), hypersensitivity vasculitis [see Warnings and Precautions ( 5.1 )] . Skin and Appendages: Rashes, pruritus, urticaria, erythema multiforme, SJS, TEN, DRESS, AGEP, exfoliative dermatitis, and linear IgA bullous dermatosis. Liver: A moderate rise in AST and/or ALT has been noted, but the significance of this finding is unknown. Hepatic dysfunction including cholestatic jaundice, hepatic cholestasis and acute cytolytic hepatitis have been reported. Renal: Crystalluria has been reported [see Overdosage ( 10 )] . Hemic and Lymphatic Systems: Anemia, including hemolytic anemia, thrombocytopenia, thrombocytopenic purpura, eosinophilia, leukopenia, and agranulocytosis have been reported. These reactions are usually reversible on discontinuation of therapy and are believed to be hypersensitivity phenomena. Central Nervous System: Reversible hyperactivity, agitation, anxiety, insomnia, confusion, convulsions, behavioral changes, aseptic meningitis, and/or dizziness have been reported. Miscellaneous: Tooth discoloration (brown, yellow, or gray staining) has been reported. Most reports occurred in pediatric patients. Discoloration was reduced or eliminated with brushing or dental cleaning in most cases.

Amoxicillin Drug Interactions

Information about and practical guidance on preventing clinically significant drug/drug and drug/food interactions that may occur in people taking the drug.
7 DRUG INTERACTIONS Coadministration with probenecid is not recommended. ( 7.1 ) Concomitant use of amoxicillin and oral anticoagulants may increase the prolongation of prothrombin time. ( 7.2 ) Coadministration with allopurinol increases the risk of rash. ( 7.3 ) Amoxicillin may reduce the efficacy of oral contraceptives. ( 7.4 ) 7.1 Probenecid Probenecid decreases the renal tubular secretion of amoxicillin. Concurrent use of amoxicillin and probenecid may result in increased and prolonged blood levels of amoxicillin. 7.2 Oral Anticoagulants Abnormal prolongation of prothrombin time (increased international normalized ratio [INR]) has been reported in patients receiving amoxicillin and oral anticoagulants. Appropriate monitoring should be undertaken when anticoagulants are prescribed concurrently. Adjustments in the dose of oral anticoagulants may be necessary to maintain the desired level of anticoagulation. 7.3 Allopurinol The concurrent administration of allopurinol and amoxicillin increases the incidence of rashes in patients receiving both drugs as compared to patients receiving amoxicillin alone. It is not known whether this potentiation of rashes is due to allopurinol or the hyperuricemia present in these patients. 7.4 Oral Contraceptives Amoxicillin may affect the intestinal flora, leading to lower estrogen reabsorption and reduced efficacy of combined oral estrogen/progesterone contraceptives. 7.5 Other Antibacterials Chloramphenicol, macrolides, sulfonamides, and tetracyclines may interfere with the bactericidal effects of penicillin. This has been demonstrated in vitro ; however, the clinical significance of this interaction is not well documented. 7.6 Effects on Laboratory Tests High urine concentrations of ampicillin may result in false-positive reactions when testing for the presence of glucose in urine using CLINITEST ® , Benedict’s Solution, or Fehling’s Solution. Since this effect may also occur with amoxicillin, it is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as CLINISTIX ® ) be used. Following administration of ampicillin or amoxicillin to pregnant women, a transient decrease in plasma concentration of total conjugated estriol, estriol-glucuronide, conjugated estrone, and estradiol has been noted.

Clinical pharmacology

Information about the clinical pharmacology and actions of the drug in humans.
12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Amoxicillin is an antibacterial drug [see Microbiology ( 12.4 )] . 12.3 Pharmacokinetics Absorption : Amoxicillin is stable in the presence of gastric acid and is rapidly absorbed after oral administration. The effect of food on the absorption of amoxicillin from the tablets and suspension of amoxicillin has been partially investigated; 400 mg and 875 mg formulations have been studied only when administered at the start of a light meal. Orally administered doses of 250 mg and 500 mg amoxicillin capsules result in average peak blood levels 1 to 2 hours after administration in the range of 3.5 mcg/mL to 5.0 mcg/mL and 5.5 mcg/mL to 7.5 mcg/mL, respectively. Mean amoxicillin pharmacokinetic parameters from an open, two-part , single-dose crossover bioequivalence study in 27 adults comparing 875 mg of amoxicillin with 875 mg of AUGMENTIN ® showed that the 875 mg tablet of amoxicillin produces an AUC 0-∞ of 35.4 ± 8.1 mcg•hr/mL and a C max of 13.8 ± 4.1 mcg/mL. Dosing was at the start of a light meal following an overnight fast. Orally administered doses of amoxicillin suspension, 125 mg/5 mL and 250 mg/5 mL, result in average peak blood levels 1 to 2 hours after administration in the range of 1.5 mcg/mL to 3.0 mcg/mL and 3.5 mcg/mL to 5.0 mcg/mL, respectively. Oral administration of single doses of 400 mg chewable tablets and 400 mg/5 mL suspension of amoxicillin to 24 adult volunteers yielded comparable pharmacokinetic data: Table 4: Mean Pharmacokinetic Parameters of Amoxicillin (400 mg chewable tablets and 400 mg/5 mL suspension) in Healthy Adults Dose * Amoxicillin AUC 0-∞ (mcg•hr/mL) Amoxicillin (±S.D.) C max (mcg/mL) † Amoxicillin (±S.D.) 400 mg (5 mL of suspension) 17.1 (3.1) 5.92 (1.62) 400 mg (1 chewable tablet) 17.9 (2.4) 5.18 (1.64) * Administered at the start of a light meal. † Mean values of 24 normal volunteers. Peak concentrations occurred approximately 1 hour after the dose. Distribution: Amoxicillin diffuses readily into most body tissues and fluids, with the exception of brain and spinal fluid, except when meninges are inflamed. In blood serum, amoxicillin is approximately 20% protein-bound. Following a 1-gram dose, and utilizing a special skin window technique to determine levels of the antibiotic, it was noted that therapeutic levels were found in the interstitial fluid. Metabolism and Excretion: The half-life of amoxicillin is 61.3 minutes. Approximately 60% of an orally administered dose of amoxicillin is excreted in the urine within 6 to 8 hours. Detectable serum levels are observed up to 8 hours after an orally administered dose of amoxicillin. Since most of the amoxicillin is excreted unchanged in the urine, its excretion can be delayed by concurrent administration of probenecid [see Drug Interactions ( 7.1 )] . 12.4 Microbiology Mechanism of Action Amoxicillin is similar to penicillin in its bactericidal action against susceptible bacteria during the stage of active multiplication. It acts through the inhibition of cell wall biosynthesis that leads to the death of the bacteria. Resistance Resistance to Amoxicillin is mediated primarily through enzymes called beta-lactamases that cleave the beta-lactam ring of amoxicillin, rendering it inactive. Antimicrobial Activity Amoxicillin has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections [see Indications and Usage ( 1 )] . Gram-Positive Bacteria Enterococcus faecalis Staphylococcus spp. Streptococcus pneumoniae Streptococcus spp. (alpha and beta-hemolytic) Gram-Negative Bacteria Escherichia coli Haemophilus influenzae Helicobacter pylori Proteus mirabilis Susceptibility Testing: For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.
Table 4: Mean Pharmacokinetic Parameters of Amoxicillin (400 mg chewable tablets and 400 mg/5 mL suspension) in Healthy Adults
Dose *AmoxicillinAUC 0-∞(mcg•hr/mL) Amoxicillin (±S.D.)C max(mcg/mL) Amoxicillin (±S.D.)
400 mg (5 mL of suspension)17.1 (3.1)5.92 (1.62)
400 mg (1 chewable tablet)17.9 (2.4)5.18 (1.64)
*Administered at the start of a light meal.
Mean values of 24 normal volunteers. Peak concentrations occurred approximately 1 hour after the dose.

Mechanism of action

Information about the established mechanism(s) of the drugÕs action in humans at various levels (for example receptor, membrane, tissue, organ, whole body). If the mechanism of action is not known, this field contains a statement about the lack of information.
12.1 Mechanism of Action Amoxicillin is an antibacterial drug [see Microbiology ( 12.4 )] .

Pharmacokinetics

Information about the clinically significant pharmacokinetics of a drug or active metabolites, for instance pertinent absorption, distribution, metabolism, and excretion parameters.
12.3 Pharmacokinetics Absorption : Amoxicillin is stable in the presence of gastric acid and is rapidly absorbed after oral administration. The effect of food on the absorption of amoxicillin from the tablets and suspension of amoxicillin has been partially investigated; 400 mg and 875 mg formulations have been studied only when administered at the start of a light meal. Orally administered doses of 250 mg and 500 mg amoxicillin capsules result in average peak blood levels 1 to 2 hours after administration in the range of 3.5 mcg/mL to 5.0 mcg/mL and 5.5 mcg/mL to 7.5 mcg/mL, respectively. Mean amoxicillin pharmacokinetic parameters from an open, two-part , single-dose crossover bioequivalence study in 27 adults comparing 875 mg of amoxicillin with 875 mg of AUGMENTIN ® showed that the 875 mg tablet of amoxicillin produces an AUC 0-∞ of 35.4 ± 8.1 mcg•hr/mL and a C max of 13.8 ± 4.1 mcg/mL. Dosing was at the start of a light meal following an overnight fast. Orally administered doses of amoxicillin suspension, 125 mg/5 mL and 250 mg/5 mL, result in average peak blood levels 1 to 2 hours after administration in the range of 1.5 mcg/mL to 3.0 mcg/mL and 3.5 mcg/mL to 5.0 mcg/mL, respectively. Oral administration of single doses of 400 mg chewable tablets and 400 mg/5 mL suspension of amoxicillin to 24 adult volunteers yielded comparable pharmacokinetic data: Table 4: Mean Pharmacokinetic Parameters of Amoxicillin (400 mg chewable tablets and 400 mg/5 mL suspension) in Healthy Adults Dose * Amoxicillin AUC 0-∞ (mcg•hr/mL) Amoxicillin (±S.D.) C max (mcg/mL) † Amoxicillin (±S.D.) 400 mg (5 mL of suspension) 17.1 (3.1) 5.92 (1.62) 400 mg (1 chewable tablet) 17.9 (2.4) 5.18 (1.64) * Administered at the start of a light meal. † Mean values of 24 normal volunteers. Peak concentrations occurred approximately 1 hour after the dose. Distribution: Amoxicillin diffuses readily into most body tissues and fluids, with the exception of brain and spinal fluid, except when meninges are inflamed. In blood serum, amoxicillin is approximately 20% protein-bound. Following a 1-gram dose, and utilizing a special skin window technique to determine levels of the antibiotic, it was noted that therapeutic levels were found in the interstitial fluid. Metabolism and Excretion: The half-life of amoxicillin is 61.3 minutes. Approximately 60% of an orally administered dose of amoxicillin is excreted in the urine within 6 to 8 hours. Detectable serum levels are observed up to 8 hours after an orally administered dose of amoxicillin. Since most of the amoxicillin is excreted unchanged in the urine, its excretion can be delayed by concurrent administration of probenecid [see Drug Interactions ( 7.1 )] .
Table 4: Mean Pharmacokinetic Parameters of Amoxicillin (400 mg chewable tablets and 400 mg/5 mL suspension) in Healthy Adults
Dose *AmoxicillinAUC 0-∞(mcg•hr/mL) Amoxicillin (±S.D.)C max(mcg/mL) Amoxicillin (±S.D.)
400 mg (5 mL of suspension)17.1 (3.1)5.92 (1.62)
400 mg (1 chewable tablet)17.9 (2.4)5.18 (1.64)
*Administered at the start of a light meal.
Mean values of 24 normal volunteers. Peak concentrations occurred approximately 1 hour after the dose.

Contraindications

Information about situations in which the drug product is contraindicated or should not be used because the risk of use clearly outweighs any possible benefit, including the type and nature of reactions that have been reported.
4 CONTRAINDICATIONS Amoxicillin is contraindicated in patients who have experienced a serious hypersensitivity reaction (e.g., anaphylaxis or Stevens-Johnson syndrome) to amoxicillin or to other β-lactam antibacterial drugs (e.g., penicillins and cephalosporins). History of a serious hypersensitivity reaction (e.g., anaphylaxis or Stevens-Johnson syndrome) to amoxicillin or to other beta-lactams (e.g., penicillins or cephalosporins). ( 4 )

Description

General information about the drug product, including the proprietary and established name of the drug, the type of dosage form and route of administration to which the label applies, qualitative and quantitative ingredient information, the pharmacologic or therapeutic class of the drug, and the chemical name and structural formula of the drug.
11 DESCRIPTION Amoxicillin, USP is a semisynthetic antibacterial (amoxicillin), an analog of ampicillin, with a broad spectrum of bactericidal activity against many Gram-positive and Gram-negative microorganisms. Chemically, it is (2 S ,5 R ,6 R )-6-[( R )-(-)-2-amino-2-( p -hydroxyphenyl)acetamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate. It may be represented structurally as: The amoxicillin, USP molecular formula is C 16 H 19 N 3 O 5 S•3H 2 O, and the molecular weight is 419.45. Tablets: Each tablet contains 500 mg or 875 mg of amoxicillin, USP as the trihydrate. Each film-coated tablet contains: colloidal silicon dioxide, crospovidone, D&C Yellow No. 10 aluminum lake, hypromellose, magnesium stearate, microcrystalline cellulose, lactose monohydrate, sodium starch glycolate, titanium dioxide and triacetin. For Oral Suspension: Each 5 mL of reconstituted suspension contains 200 mg, 250 mg or 400 mg of amoxicillin, USP as the trihydrate. Each 5 mL of the 200 mg reconstituted suspension contains 0.09 mEq (2.11 mg) of sodium. Each 5 mL of the 250 mg reconstituted suspension contains 0.14 mEq (3.24 mg) of sodium. Each 5 mL of the 400 mg reconstituted suspension contains 0.12 mEq (2.69 mg) of sodium. Inactive ingredients for 200 mg and 400 mg : Colloidal silicon dioxide, FD&C Red No. 40, natural and artificial fruit gum flavor, sodium benzoate, sodium citrate, spray dried mask flavor, sucrose, and xanthan gum. Inactive ingredients for 250 mg : FD&C Red No. 40, mixed berry flavoring, silicon dioxide, sodium benzoate, sodium citrate, sucrose, and xanthan gum. Tablets (Chewable): Each tablet contains 125 mg or 250 mg of amoxicillin, USP as the trihydrate. Inactive ingredients in each 125 mg or 250 mg chewable tablet: cherry flavor, lactose anhydrous, magnesium stearate, mannitol, microcrystalline cellulose, sodium citrate, and sucrose. Capsules: Each capsule, for oral administration, contains 250 mg or 500 mg amoxicillin, USP as the trihydrate. The capsules contain the following inactive ingredients: magnesium stearate and talc. The capsule shell contains D&C Yellow No. 10, FD&C Red No. 40, gelatin, and titanium dioxide. In addition, the 250 mg contains D&C Red No. 28 and FD&C Blue No. 1. The 500 mg may also contain methylparaben, propylparaben, and sodium lauryl sulfate. The printing ink contains black iron oxide, propylene glycol, shellac, and strong ammonia solution. In addition, the 250 mg may contain D&C Yellow No. 10 Aluminum Lake, FD&C Blue No. 1 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake, and FD&C Red No. 40 Aluminum Lake. The 500 mg may also contain potassium hydroxide. 1

Dosage and administration

Information about the drug product’s dosage and administration recommendations, including starting dose, dose range, titration regimens, and any other clinically sigificant information that affects dosing recommendations.
2 DOSAGE AND ADMINISTRATION In Adults, 750 to 1750 mg/day in divided doses every 8 to 12 hours. In Pediatric Patients over 3 Months of Age, 20 to 45 mg/kg/day in divided doses every 8 to 12 hours. Refer to full prescribing information for specific dosing regimens. ( 2.2 , 2.3 ) The upper dose for neonates and infants aged 3 months or younger is 30 mg/kg/day divided every 12 hours. ( 2.3 ) Dosing for H. pylori Infection (in Adults): Triple therapy: 1 gram amoxicillin, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days. Dual therapy: 1 gram amoxicillin and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days. ( 2.4 ) Reduce the dose in patients with severe renal impairment (GFR greater than 30 mL/min). ( 2.5 ) 2.1 Important Administration Instructions To minimize the potential for gastrointestinal intolerance, amoxicillin should be taken at the start of a meal. 2.2 Dosage for Adults and Pediatric Patients Aged 3 Months (12 weeks) and Older Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic, or evidence of bacterial eradication has been obtained. It is recommended that there be at least 10 days’ treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever. In some infections, therapy may be required for several weeks. It may be necessary to continue clinical and/or bacteriological follow-up for several months after cessation of therapy. Table 1. Dosage Recommendations for Adult and Pediatric Patients Aged 3 Months (12 weeks) and Older Infection Severity a Recommended Dosage for Adults and Pediatric Patients Aged 3 Months and Older and Weight Greater than 40 kg Recommended Dosage for Pediatric Patients Aged 3 Months and Older and Weight Less than 40 kg Ear/Nose/Throat Skin/Skin Structure Genitourinary Tract Mild/Moderate 500 mg every 12 hours or 250 mg every 8 hours 25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours Lower Respiratory Tract Mild/Moderate or Severe 875 mg every 12 hours or 500 mg every 8 hours 45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours a Dosage for infections caused by bacteria that are intermediate in their susceptibility to amoxicillin should follow the recommendations for severe infections. 2.3 Dosage in Pediatric Patients Aged Less than 12 Weeks (3 months) It is recommended that there be at least 10 days’ treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever. Due to incompletely developed renal function affecting elimination of amoxicillin in this age group, the recommended upper dose of amoxicillin is 30 mg/kg/day divided every 12 hours. There are currently no dosing recommendations for pediatric patients with impaired renal function. Treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic, or evidence of bacterial eradication has been obtained. 2.4 Dosage for H. pylori Infection in Adults Triple therapy: The recommended adult oral dose is 1 gram amoxicillin, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (every 12 hours) for 14 days. Dual therapy: The recommended adult oral dose is 1 gram amoxicillin and 30 mg lansoprazole, each given three times daily (every 8 hours) for 14 days. Please refer to clarithromycin and lansoprazole full prescribing information. 2.5 Dosage in Renal Impairment for Adults and Pediatric Patients Aged 3 Months and Older and Weight Greater than 40 kg Patients with impaired renal function do not generally require a reduction in dose unless the impairment is severe. Renal impairment patients with a glomerular filtration rate of less than 30 mL/min should NOT receive the 875 mg dose. See dosage regimens in patients with severe renal impairment provided in Table 2. Table 2. Dosing in Patients with Severe Renal Impairment Patients with Renal Impairment Dosage Regimen GFR 10 to 30 mL/min 500 mg or 250 mg every 12 hours, depending on the severity of the infection GFR less than 10 mL/min 500 mg or 250 mg every 24 hours, depending on severity of the infection Hemodialysis 500 mg or 250 mg every 24 hours, depending on severity of the infection Administer an additional dose both during and at the end of dialysis 2.6 Directions for Mixing Oral Suspension Prepare a suspension at time of dispensing as follows: Tap bottle until all powder flows freely. Measure the total amount of water (see Table 3). Add approximately 1/3 of the water to powder. Replace cap and shake vigorously to wet powder. Add remaining water. Replace cap and shake vigorously . Table 3. Amount of Water for Mixing For Oral Suspension Strength Bottle Size Total Amount of Water Required for Reconstitution For Oral Suspension 200 mg/5 mL 50 mL 39 mL 75 mL 57 mL 100 mL 75 mL For Oral Suspension 250 mg/5 mL 80 mL 47 mL 100 mL 60 mL 150 mL 90 mL For Oral Suspension 400 mg/5 mL 50 mL 35 mL 75 mL 51 mL 100 mL 67 mL After reconstitution, the required amount of suspension should be placed directly on the child’s tongue for swallowing. Alternate means of administration are to add the required amount of suspension to formula, milk, fruit juice, water, ginger ale, or cold drinks. These preparations should then be taken immediately. SHAKE ORAL SUSPENSION WELL BEFORE USING. Keep bottle tightly closed. Any unused portion of the reconstituted suspension must be discarded after 14 days. Refrigeration is preferable, but not required.
Table 1. Dosage Recommendations for Adult and Pediatric Patients Aged 3 Months (12 weeks) and Older
InfectionSeverity aRecommended Dosage for Adults and Pediatric Patients Aged 3 Months and Older and Weight Greater than 40 kgRecommended Dosage for Pediatric Patients Aged 3 Months and Older and Weight Less than 40 kg
Ear/Nose/Throat Skin/Skin Structure Genitourinary TractMild/Moderate500 mg every 12 hours or250 mg every 8 hours25 mg/kg/day in divided doses every 12 hoursor20 mg/kg/day in divided doses every 8 hours
Severe875 mg every 12 hours or500 mg every 8 hours45 mg/kg/day in divided doses every 12 hoursor40 mg/kg/day in divided doses every 8 hours
Lower Respiratory TractMild/Moderate or Severe875 mg every 12 hours or500 mg every 8 hours45 mg/kg/day in divided doses every 12 hoursor40 mg/kg/day in divided doses every 8 hours
aDosage for infections caused by bacteria that are intermediate in their susceptibility to amoxicillin should follow the recommendations for severe infections.
Table 2. Dosing in Patients with Severe Renal Impairment
Patients with Renal ImpairmentDosage Regimen
GFR 10 to 30 mL/min500 mg or 250 mg every 12 hours, depending on the severity of the infection
GFR less than 10 mL/min500 mg or 250 mg every 24 hours, depending on severity of the infection
Hemodialysis500 mg or 250 mg every 24 hours, depending on severity of the infectionAdminister an additional dose both during and at the end of dialysis
Table 3. Amount of Water for Mixing For Oral Suspension
StrengthBottle SizeTotal Amount of Water Required for Reconstitution
For Oral Suspension 200 mg/5 mL50 mL39 mL
75 mL57 mL
100 mL75 mL
For Oral Suspension 250 mg/5 mL80 mL47 mL
100 mL60 mL
150 mL90 mL
For Oral Suspension 400 mg/5 mL50 mL35 mL
75 mL51 mL
100 mL67 mL

Dosage forms and strengths

Information about all available dosage forms and strengths for the drug product to which the labeling applies. This field may contain descriptions of product appearance.
3 DOSAGE FORMS AND STRENGTHS Amoxicillin: Tablets: 500 mg: Each tablet contains 500 mg of amoxicillin, USP as the trihydrate. Each film-coated, capsule-shaped, off-white, tablet is debossed with “93” on one side and “2263” on the other side. 875 mg: Each tablet contains 875 mg of amoxicillin, USP as the trihydrate. Each film-coated, capsule-shaped, off-white tablet is scored on one side, debossed with “93” on one side of the score and “2264” on the other side of the score. For Oral Suspension: 200 mg/5 mL: Each 5 mL of reconstituted pink, fruit gum flavored suspension contains 200 mg amoxicillin, USP as the trihydrate. 250 mg/5 mL: Each 5 mL of reconstituted mixed berry flavored suspension contains 250 mg amoxicillin, USP as the trihydrate. 400 mg/5 mL: Each 5 mL of reconstituted pink, fruit gum flavored suspension contains 400 mg amoxicillin, USP as the trihydrate. Tablets (Chewable): 125 mg: Each white to off-white, capsule-shaped tablet, debossed 93 on one side and 2267 on the other side and contains 125 mg of amoxicillin, USP as the trihydrate. 250 mg: Each white to off-white, capsule-shaped tablet, debossed 93 (partial bisect between 9 and 3) on one side and 2268 on the other side and contains 250 mg of amoxicillin, USP as the trihydrate. Capsules: 250 mg: Opaque caramel cap and opaque buff body, hard gelatin capsule. Printed black “TEVA” on cap and “3107” on body portions of the capsule and contain 250 mg amoxicillin, USP as the trihydrate. 500 mg: Opaque buff cap and opaque buff body, hard gelatin capsules. Printed black “TEVA” on cap and “3109” on body portions of the capsules and contain 500 mg amoxicillin, USP as the trihydrate. Tablets: 500 mg, 875 mg ( 3 ) For Oral Suspension: 200 mg/5 mL, 250 mg/5 mL, 400 mg/5 mL ( 3 ) Tablets (Chewable): 125 mg, 250 mg ( 3 ) Capsules: 250 mg, 500 mg ( 3 )

Indications and usage

A statement of each of the drug products indications for use, such as for the treatment, prevention, mitigation, cure, or diagnosis of a disease or condition, or of a manifestation of a recognized disease or condition, or for the relief of symptoms associated with a recognized disease or condition. This field may also describe any relevant limitations of use.
1 INDICATIONS AND USAGE Adults and Pediatric Patients Upper Respiratory Tract Infections of the Ear, Nose, and Throat: Amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules are indicated in the treatment of infections due to susceptible (ONLY β-lactamase-negative) isolates of Streptococcus species. (α- and β-hemolytic isolates only), Streptococcus pneumoniae , Staphylococcus spp., or Haemophilus influenzae . Infections of the Genitourinary Tract: Amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules are indicated in the treatment of infections due to susceptible (ONLY β-lactamase-negative) isolates of Escherichia coli , Proteus mirabilis , or Enterococcus faecalis . Infections of the Skin and Skin Structure: Amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules are indicated in the treatment of infections due to susceptible (ONLY β-lactamase-negative) isolates of Streptococcus spp. (α- and β-hemolytic isolates only), Staphylococcus spp., or E. coli . Infections of the Lower Respiratory Tract: Amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules are indicated in the treatment of infections due to susceptible (ONLY β-lactamase-negative) isolates of Streptococcus spp. (α- and β-hemolytic isolates only), S. pneumoniae , Staphylococcus spp., or H. influenzae . Adult Patients only Helicobacter pylori Infection and Duodenal Ulcer Disease: Triple therapy for Helicobacter pylori (H. pylori) with clarithromycin and lansoprazole: Amoxicillin, in combination with clarithromycin plus lansoprazole as triple therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or 1-year history of a duodenal ulcer) to eradicate H. pylori . Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. Dual therapy for H. pylori with lansoprazole: Amoxicillin, in combination with lansoprazole delayed-release capsules as dual therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or 1-year history of a duodenal ulcer) who are either allergic or intolerant to clarithromycin or in whom resistance to clarithromycin is known or suspected. (See the clarithromycin package insert, MICROBIOLOGY.) Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. Usage To reduce the development of drug-resistant bacteria and maintain the effectiveness of amoxicillin and other antibacterial drugs, amoxicillin should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Amoxicillin is a penicillin-class antibacterial indicated for treatment of infections due to susceptible strains of designated microorganisms. ( 1 ) Adults and Pediatric Patients ( 1 ) Upper Respiratory Tract Infections of the Ear, Nose, and Throat Infections of the Genitourinary Tract Infections of the Skin and Skin Structure Infections of the Lower Respiratory Tract Adult Patients only ( 1 ) Helicobacter pylori Infection and Duodenal Ulcer Disease Usage To reduce the development of drug-resistant bacteria and maintain the effectiveness of amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules and other antibacterial drugs, amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. ( 1 )

Spl product data elements

Usually a list of ingredients in a drug product.
Amoxicillin Amoxicillin MAGNESIUM STEARATE TALC D&C YELLOW NO. 10 FD&C RED NO. 40 GELATIN TITANIUM DIOXIDE METHYLPARABEN PROPYLPARABEN SODIUM LAURYL SULFATE FERROSOFERRIC OXIDE PROPYLENE GLYCOL SHELLAC AMMONIA POTASSIUM HYDROXIDE AMOXICILLIN AMOXICILLIN ANHYDROUS buff TEVA;3109

Carcinogenesis and mutagenesis and impairment of fertility

Information about carcinogenic, mutagenic, or fertility impairment potential revealed by studies in animals. Information from human data about such potential is part of the warnings field.
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Long-term studies in animals have not been performed to evaluate carcinogenic potential. Studies to detect mutagenic potential of amoxicillin alone have not been conducted; however, the following information is available from tests on a 4:1 mixture of AUGMENTIN ® . AUGMENTIN ® was non-mutagenic in the Ames bacterial mutation assay, and the yeast gene conversion assay. AUGMENTIN ® was weakly positive in the mouse lymphoma assay, but the trend toward increased mutation frequencies in this assay occurred at doses that were also associated with decreased cell survival. AUGMENTIN ® was negative in the mouse micronucleus test and in the dominant lethal assay in mice. Potassium clavulanate alone was tested in the Ames bacterial mutation assay and in the mouse micronucleus test and was negative in each of these assays. In a multi-generation reproduction study in rats, no impairment of fertility or other adverse reproductive effects were seen at doses up to 500 mg/kg (approximately 2 times the 3 g human dose based on body surface area).

Nonclinical toxicology

Information about toxicology in non-human subjects.
13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Long-term studies in animals have not been performed to evaluate carcinogenic potential. Studies to detect mutagenic potential of amoxicillin alone have not been conducted; however, the following information is available from tests on a 4:1 mixture of AUGMENTIN ® . AUGMENTIN ® was non-mutagenic in the Ames bacterial mutation assay, and the yeast gene conversion assay. AUGMENTIN ® was weakly positive in the mouse lymphoma assay, but the trend toward increased mutation frequencies in this assay occurred at doses that were also associated with decreased cell survival. AUGMENTIN ® was negative in the mouse micronucleus test and in the dominant lethal assay in mice. Potassium clavulanate alone was tested in the Ames bacterial mutation assay and in the mouse micronucleus test and was negative in each of these assays. In a multi-generation reproduction study in rats, no impairment of fertility or other adverse reproductive effects were seen at doses up to 500 mg/kg (approximately 2 times the 3 g human dose based on body surface area).

Package label principal display panel

The content of the principal display panel of the product package, usually including the product’s name, dosage forms, and other key information about the drug product.
Package Label.Principal Display Panel Amoxicillin Capsules, USP 500 mg Rx only 55289020 Label

Recent major changes

A list of the section(s) that contain substantive changes that have been approved by FDA in the product labeling. The headings and subheadings, if appropriate, affected by the change are listed together with each section’s identifying number and the month and year on which the change was incorporated in the labeling.
Warnings and Precautions, Drug-Induced Enterocolitis Syndrome (DIES) ( 5.3 ) 5/2024

Amoxicillin: Information for patients

Information necessary for patients to use the drug safely and effectively, such as precautions concerning driving or the concomitant use of other substances that may have harmful additive effects.
17 PATIENT COUNSELING INFORMATION Administration Instructions Advise patients that amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules may be taken every 8 hours or every 12 hours, depending on the dose prescribed. Allergic Reactions Counsel patients that amoxicillin contains a penicillin class drug product that can cause allergic reactions in some individuals. Severe Cutaneous Adverse Reactions (SCAR) Advise patients about the signs and symptoms of serious skin manifestations. Instruct patients to stop taking amoxicillin immediately and promptly report the first signs or symptoms of skin rash, mucosal lesions, or any other sign of hypersensitivity [see Warnings and Precautions ( 5.2 )] . Diarrhea Counsel patients that diarrhea is a common problem caused by antibacterial drugs which usually ends when the antibacterial drug is discontinued. Sometimes after starting treatment with antibacterial drugs, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as 2 or more months after having taken their last dose of the antibacterial drug. If this occurs, patients should contact their physician as soon as possible. Antibacterial Resistance Patients should be counseled that antibacterial drugs, including amoxicillin, should only be used to treat or prevent bacterial infections. Antibacterial drugs do not treat viral infections (e.g., the common cold). When amoxicillin tablets, amoxicillin for oral suspension, amoxicillin tablets (chewable), and amoxicillin capsules are prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may: (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by amoxicillin or other antibacterial drugs in the future. Storage and Special Handling Instructions It is preferable to refrigerate amoxicillin suspensions, but not required. Shake oral suspensions well before each use. Keep bottle tightly closed. When dosing a child with the suspension (liquid), use a calibrated oral syringe. Be sure to rinse the calibrated oral syringe after each use. Bottles of suspension of amoxicillin may contain more liquid than required. Follow your doctor’s instructions about the amount to use and the days of treatment your child requires. Discard any unused portion of the suspension after 14 days. Brands listed are the trademarks of their respective owners. Manufactured In Canada By: Teva Canada Limited Toronto, Canada M1B 2K9 Manufactured For: Teva Pharmaceuticals Parsippany, NJ 07054 Rev. 5/2024

Clinical studies

This field may contain references to clinical studies in place of detailed discussion in other sections of the labeling.
14 CLINICAL STUDIES 14.1 H. pylori Eradication to Reduce the Risk of Duodenal Ulcer Recurrence Randomized, double-blind clinical studies performed in the United States in patients with H. pylori and duodenal ulcer disease (defined as an active ulcer or history of an ulcer within 1 year) evaluated the efficacy of lansoprazole in combination with amoxicillin capsules and clarithromycin tablets as triple 14-day therapy, or in combination with amoxicillin capsules as dual 14-day therapy, for the eradication of H. pylori . Based on the results of these studies, the safety and efficacy of 2 different eradication regimens were established: Triple therapy: Amoxicillin 1 gram twice daily/clarithromycin 500 mg twice daily/lansoprazole 30 mg twice daily (see Table 5). Dual therapy: Amoxicillin 1 gram three times daily/lansoprazole 30 mg three times daily (see Table 6). All treatments were for 14 days. H. pylori eradication was defined as 2 negative tests (culture and histology) at 4 to 6 weeks following the end of treatment. Triple therapy was shown to be more effective than all possible dual therapy combinations. Dual therapy was shown to be more effective than both monotherapies. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. Table 5. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Triple Therapy Regimen Study Triple Therapy Triple Therapy Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 92 [80.0 to 97.7] (n equals 48) 86 [73.3 to 93.5] (n equals 55) Study 2 86 [75.7 to 93.6] (n equals 66) 83 [72.0 to 90.8] (n equals 70) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest ® , histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. b Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy. Table 6. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Dual Therapy Regimen Study Dual Therapy Dual Therapy Evaluable Analysis a [95% Confidence Interval] (number of patients) Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients) Study 1 77 [62.5 to 87.2] (n equals 51) 70 [56.8 to 81.2] (n equals 60) Study 2 66 [51.9 to 77.5] (n equals 58) 61 [48.5 to 72.9] (n equals 67) a This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pylori infection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest ® , histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy. b Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy.
Table 5. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Triple Therapy Regimen
Study Triple TherapyTriple Therapy
Evaluable Analysis a[95% Confidence Interval](number of patients)Intent-to-Treat Analysis b[95% Confidence Interval](number of patients)
Study 192[80.0 to 97.7](n equals 48)86[73.3 to 93.5](n equals 55)
Study 286[75.7 to 93.6](n equals 66)83[72.0 to 90.8](n equals 70)
aThis analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pyloriinfection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest ®, histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.
bPatients were included in the analysis if they had documented H. pyloriinfection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy.
Table 6. H. pylori Eradication Rates When Amoxicillin is Administered as Part of a Dual Therapy Regimen
Study Dual TherapyDual Therapy
Evaluable Analysis a [95% Confidence Interval] (number of patients)Intent-to-Treat Analysis b [95% Confidence Interval] (number of patients)
Study 177[62.5 to 87.2](n equals 51)70[56.8 to 81.2](n equals 60)
Study 266[51.9 to 77.5](n equals 58)61[48.5 to 72.9](n equals 67)
aThis analysis was based on evaluable patients with confirmed duodenal ulcer (active or within 1 year) and H. pyloriinfection at baseline defined as at least 2 of 3 positive endoscopic tests from CLOtest ®, histology, and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.
bPatients were included in the analysis if they had documented H. pyloriinfection at baseline as defined above and had a confirmed duodenal ulcer (active or within 1 year). All dropouts were included as failures of therapy.

References

This field may contain references when prescription drug labeling must summarize or otherwise relay on a recommendation by an authoritative scientific body, or on a standardized methodology, scale, or technique, because the information is important to prescribing decisions.
15 REFERENCES Swanson-Biearman B, Dean BS, Lopez G, Krenzelok EP. The effects of penicillin and cephalosporin ingestions in children less than six years of age. Vet Hum Toxicol. 1988; 30: 66-67.

Geriatric use

Information about any limitations on any geriatric indications, needs for specific monitoring, hazards associated with use of the drug in the geriatric population.
8.5 Geriatric Use An analysis of clinical studies of amoxicillin was conducted to determine whether subjects aged 65 and over respond differently from younger subjects. These analyses have not identified differences in responses between the elderly and younger patients, but a greater sensitivity of some older individuals cannot be ruled out. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Labor and delivery

Information about the drug’s use during labor or delivery, whether or not the use is stated in the indications section of the labeling, including the effect of the drug on the mother and fetus, on the duration of labor or delivery, on the possibility of delivery-related interventions, and the effect of the drug on the later growth, development, and functional maturation of the child.
8.2 Labor and Delivery Oral ampicillin is poorly absorbed during labor. It is not known whether use of amoxicillin in humans during labor or delivery has immediate or delayed adverse effects on the fetus, prolongs the duration of labor, or increases the likelihood of the necessity for an obstetrical intervention.

Nursing mothers

Information about excretion of the drug in human milk and effects on the nursing infant, including pertinent adverse effects observed in animal offspring.
8.3 Nursing Mothers Penicillins have been shown to be excreted in human milk. Amoxicillin use by nursing mothers may lead to sensitization of infants. Caution should be exercised when amoxicillin is administered to a nursing woman.

Pediatric use

Information about any limitations on any pediatric indications, needs for specific monitoring, hazards associated with use of the drug in any subsets of the pediatric population (such as neonates, infants, children, or adolescents), differences between pediatric and adult responses to the drug, and other information related to the safe and effective pediatric use of the drug.
8.4 Pediatric Use The safety and effectiveness of amoxicillin for the treatment of upper respiratory tract infections, and infections of the genitourinary tract, skin and skin structure and lower respiratory tract have been established in pediatric patients. The safety and effectiveness of amoxicillin for the treatment of H. Pylori infection have not been established in pediatric patients. Because of incompletely developed renal function in neonates and young infants, the elimination of amoxicillin may be delayed. Dosing of amoxicillin should be modified in pediatric patients 12 weeks or younger (3 months or younger) [see Dosage and Administration ( 2.3 )] .

Pregnancy

Information about effects the drug may have on pregnant women or on a fetus. This field may be ommitted if the drug is not absorbed systemically and the drug is not known to have a potential for indirect harm to the fetus. It may contain information about the established pregnancy category classification for the drug. (That information is nominally listed in the teratogenic_effects field, but may be listed here instead.)
8.1 Pregnancy Teratogenic Effects : Pregnancy Category B. Reproduction studies have been performed in mice and rats at doses up to 2000 mg/kg (3 and 6 times the 3 g human dose, based on body surface area). There was no evidence of harm to the fetus due to amoxicillin. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, amoxicillin should be used during pregnancy only if clearly needed.

Use in specific populations

Information about use of the drug by patients in specific populations, including pregnant women and nursing mothers, pediatric patients, and geriatric patients.
8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy Teratogenic Effects : Pregnancy Category B. Reproduction studies have been performed in mice and rats at doses up to 2000 mg/kg (3 and 6 times the 3 g human dose, based on body surface area). There was no evidence of harm to the fetus due to amoxicillin. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, amoxicillin should be used during pregnancy only if clearly needed. 8.2 Labor and Delivery Oral ampicillin is poorly absorbed during labor. It is not known whether use of amoxicillin in humans during labor or delivery has immediate or delayed adverse effects on the fetus, prolongs the duration of labor, or increases the likelihood of the necessity for an obstetrical intervention. 8.3 Nursing Mothers Penicillins have been shown to be excreted in human milk. Amoxicillin use by nursing mothers may lead to sensitization of infants. Caution should be exercised when amoxicillin is administered to a nursing woman. 8.4 Pediatric Use The safety and effectiveness of amoxicillin for the treatment of upper respiratory tract infections, and infections of the genitourinary tract, skin and skin structure and lower respiratory tract have been established in pediatric patients. The safety and effectiveness of amoxicillin for the treatment of H. Pylori infection have not been established in pediatric patients. Because of incompletely developed renal function in neonates and young infants, the elimination of amoxicillin may be delayed. Dosing of amoxicillin should be modified in pediatric patients 12 weeks or younger (3 months or younger) [see Dosage and Administration ( 2.3 )] . 8.5 Geriatric Use An analysis of clinical studies of amoxicillin was conducted to determine whether subjects aged 65 and over respond differently from younger subjects. These analyses have not identified differences in responses between the elderly and younger patients, but a greater sensitivity of some older individuals cannot be ruled out. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. 8.6 Dosing in Renal Impairment Amoxicillin is primarily eliminated by the kidney and dosage adjustment is usually required in patients with severe renal impairment (GFR less than 30 mL/min). See Dosing in Renal Impairment ( 2.5 ) for specific recommendations in patients with renal impairment.

How supplied

Information about the available dosage forms to which the labeling applies, and for which the manufacturer or distributor is responsible. This field ordinarily includes the strength of the dosage form (in metric units), the units in which the dosage form is available for prescribing, appropriate information to facilitate identification of the dosage forms (such as shape, color, coating, scoring, and National Drug Code), and special handling and storage condition information.
16 HOW SUPPLIED/STORAGE AND HANDLING Amoxicillin tablets, USP: 500 mg : Opaque buff cap and opaque buff body, hard gelatin capsules. Printed black “TEVA” on cap and “3109” on body portions of the capsules and contain 500 mg amoxicillin, USP as the trihydrate. They are available in: Bottles of 4 NDC 55289-020-04 Bottles of 6 NDC 55289-020-06 Bottles of 9 NDC 55289-020-09 Bottles of 14 NDC 55289-020-14 Bottles of 15 NDC 55289-020-15 Bottles of 21 NDC 55289-020-21 Bottles of 24 NDC 55289-020-24 Bottles of 28 NDC 55289-020-28 Bottles of 30 NDC 55289-020-30 Bottles of 40 NDC 55289-020-40 Bottles of 42 NDC 55289-020-42 Bottles of 50 NDC 55289-020-50 Bottles of 56 NDC 55289-020-56 Bottles of 60 NDC 55289-020-60 Bottles of 63 NDC 55289-020-63 Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]. Dispense in a tight, light-resistant container as defined in the USP, with a child-resistant closure (as required). Keep this and all medications out of the reach of children.

Disclaimer: Do not rely on openFDA or Phanrmacy Near Me to make decisions regarding medical care. While we make every effort to ensure that data is accurate, you should assume all results are unvalidated. Source: OpenFDA, Healthporta Drugs API